Trắc nghiệm Bài 7: Tính chất ba đường trung tuyến của tam giác Toán 7 Chân trời sáng tạoĐề bài
Cho \(\Delta ABC.\) Trên tia đối của tia \(BC\) lấy điểm \(E,\) trên tia đối của tia \(CB\) lấy điểm \(F\) sao cho \(BE = CF.\) Gọi \(G\) là trọng tâm tam giác \(ABC.\)\(AG\) cắt \(BC\) tại \(M\). Lấy \(H\) là trung điểm \(AG.\) Nối \(EG\) cắt \(AF\) tại \(N.\) Lấy \(I\) là trung điểm \(EG.\)
Câu 1
Chọn câu đúng.
Câu 2
Chọn câu đúng.
Câu 3 :
Cho tam giác $MNP,$ hai đường trung tuyến $ME$ và $NF$ cắt nhau tại $O.$ Tính diện tích tam giác $MNP,$ biết diện tích tam giác $MNO$ là \(8c{m^2}\).
Câu 4 :
Cho tam giác $ABC$ vuông tại $A$ có $AB = 5cm,BC = 13cm$ . Ba đường trung tuyến $AM,BN,CE$ cắt nhau tại $O.$
![]()
Câu 5 :
Cho tam giác \(ABC\), đường trung tuyến \(BD\). Trên tia đối của tia $DB$ lấy điểm \(E\) sao cho \(DE = DB.\) Gọi \(M,N\) theo thứ tự là trung điểm của \(BC;CE.\) Gọi \(I;K\) theo thứ tự là giao điểm của \(AM,AN\) với \(BE.\) Chọn câu đúng.
Câu 6 :
Cho tam giác \(ABC\), các đường trung tuyến \(BD\) và \(CE\). Chọn câu đúng.
Câu 7 :
Cho tam giác $ABC$ có các đường trung tuyến \(BD\) và \(CE\) vuông góc với nhau. Tính độ dài cạnh \(BC\) biết \(BD = 9\,cm;\,CE = 12\,cm.\)
Câu 8 :
Cho tam giác \(ABC\) có hai đường trung tuyến \(BD;CE\) sao cho \(BD = CE\). Khi đó tam giác \(ABC\)
Câu 9 :
Cho \(G\) là trọng tâm của tam giác đều. Chọn câu đúng.
Câu 10 :
Tam giác \(ABC\) có trung tuyến \(AM = 9\,cm\) và trọng tâm \(G\). Độ dài đoạn \(AG\) là
Cho hình vẽ sau:
Câu 11
Điền số thích hợp vào chỗ chấm: \(BG = ...BE\)
Câu 12
Điền số thích hợp vào chỗ chấm: $AG = \ldots GD$
Câu 13 :
Điền số thích hợp vào chỗ chấm: “Trọng tâm của một tam giác cách mỗi đỉnh một khoảng bằng … độ dài đường trung tuyến đi qua đỉnh ấy”
Câu 14 :
Chọn câu sai.
Lời giải và đáp án
Cho \(\Delta ABC.\) Trên tia đối của tia \(BC\) lấy điểm \(E,\) trên tia đối của tia \(CB\) lấy điểm \(F\) sao cho \(BE = CF.\) Gọi \(G\) là trọng tâm tam giác \(ABC.\)\(AG\) cắt \(BC\) tại \(M\). Lấy \(H\) là trung điểm \(AG.\) Nối \(EG\) cắt \(AF\) tại \(N.\) Lấy \(I\) là trung điểm \(EG.\)
Câu 1
Chọn câu đúng.
Đáp án : A Phương pháp giải :
+ Chứng minh \(ME = MF\), từ đó suy ra \(AM\) là đường trung tuyến ứng với cạnh \(EF\) của \(\Delta AEF\)
+ Sử dụng định lý về tính chất ba đường trung tuyến của tam giác: Trọng tâm của một tam giác cách mỗi đỉnh một khoảng bằng \(\dfrac{2}{3}\) độ dài đường trung tuyến đi qua đỉnh ấy.
+ Khi đó ta chứng minh được G là trọng tâm \(\Delta AEF\).
Lời giải chi tiết :
![]() Câu 2
Chọn câu đúng.
Đáp án : A Phương pháp giải :
+ Chứng minh \(GI = GN\); \(GH = GM\)
+ Chứng minh \(\Delta GHI = \Delta GMN\,(c.g.c)\), từ đó suy ra \(HI = MN\)
+ Dựa vào dấu hiệu nhận biết hai đường thẳng song song, chứng minh \(HI//MN\): Nếu đường thẳng \(c\) cắt hai đường thẳng \(a,b\) và trong các góc tạo thành có một cặp góc so le trong bằng nhau (hoặc một cặp góc đồng vị bằng nhau) thì \(a,b\) song song với nhau.
Lời giải chi tiết :
![]()
Câu 3 :
Cho tam giác $MNP,$ hai đường trung tuyến $ME$ và $NF$ cắt nhau tại $O.$ Tính diện tích tam giác $MNP,$ biết diện tích tam giác $MNO$ là \(8c{m^2}\).
Đáp án : D Phương pháp giải :
+) Dựa vào đinh lý về tính chất ba đường trung tuyến của một tam giác để tìm mối liên hệ giữa các cạnh.
+) Áp dụng công thức tính diện tích của một tam giác.
Lời giải chi tiết :
Câu 4 :
Cho tam giác $ABC$ vuông tại $A$ có $AB = 5cm,BC = 13cm$ . Ba đường trung tuyến $AM,BN,CE$ cắt nhau tại $O.$
![]()
Đáp án : B Phương pháp giải :
+) Sử dụng định lý Py-ta-go để tính cạnh của tam giác vuông
+) Dựa vào đinh lý về tính chất ba đường trung tuyến của một tam giác để tính độ dài cạnh theo đề bài yêu cầu
Lời giải chi tiết :
![]()
Câu 5 :
Cho tam giác \(ABC\), đường trung tuyến \(BD\). Trên tia đối của tia $DB$ lấy điểm \(E\) sao cho \(DE = DB.\) Gọi \(M,N\) theo thứ tự là trung điểm của \(BC;CE.\) Gọi \(I;K\) theo thứ tự là giao điểm của \(AM,AN\) với \(BE.\) Chọn câu đúng.
Đáp án : C Lời giải chi tiết :
Câu 6 :
Cho tam giác \(ABC\), các đường trung tuyến \(BD\) và \(CE\). Chọn câu đúng.
Đáp án : B Phương pháp giải :
+ Sử dụng tính chất đường trung tuyến của tam giác và quan hệ giữa các cạnh trong tam giác
Lời giải chi tiết :
Câu 7 :
Cho tam giác $ABC$ có các đường trung tuyến \(BD\) và \(CE\) vuông góc với nhau. Tính độ dài cạnh \(BC\) biết \(BD = 9\,cm;\,CE = 12\,cm.\)
Đáp án : D Phương pháp giải :
+ Dựa vào đinh lý về tính chất ba đường trung tuyến của một tam giác để tính \(BG;CG.\)
+ Sử dụng định lý Pytago để tính cạnh \(BC.\)
Lời giải chi tiết :
Câu 8 :
Cho tam giác \(ABC\) có hai đường trung tuyến \(BD;CE\) sao cho \(BD = CE\). Khi đó tam giác \(ABC\)
Đáp án : D Phương pháp giải :
+ Sử dụng tính chất về đường trung tuyến của tam giác
+ Chứng minh hai tam giác bằng nhau \(\Delta BGE = \Delta CGD\left( {c - g - c} \right)\)
+ Từ đó suy ra tính chất của tam giác \(ABC.\)
Lời giải chi tiết :
Câu 9 :
Cho \(G\) là trọng tâm của tam giác đều. Chọn câu đúng.
Đáp án : A Phương pháp giải :
Chứng minh $D,E,F$ theo thứ tự là trung điểm của $BC,AC,AB.$
Kết hợp với $BC = AC = AB$ (do tam giác $ABC$ là tam giác đều) ta được $BD = DC = CE = EA = AF = FB$
Chứng minh \(\Delta AEB = AFC\,(c.g.c)\), suy ra $BE = CF$
Chứng minh \(\Delta BEC = ADC\,(c.g.c)\), suy ra $BE = AD$
Do đó $AD = BE = CF$
Sử dụng tính chất của trọng tâm của tam giác để chứng minh $GA = GB = GC.$
Lời giải chi tiết :
![]()
Câu 10 :
Tam giác \(ABC\) có trung tuyến \(AM = 9\,cm\) và trọng tâm \(G\). Độ dài đoạn \(AG\) là
Đáp án : C Lời giải chi tiết :
Vì \(G\) là trọng tâm tam giác \(ABC\) và \(AM\) là đường trung tuyến nên \(AG = \dfrac{2}{3}AM\) (tính chất ba đường trung tuyến của tam giác)
Do đó $AG = \dfrac{2}{3}.9 = 6\,cm.$
Cho hình vẽ sau:
Câu 11
Điền số thích hợp vào chỗ chấm: \(BG = ...BE\)
Đáp án : D Lời giải chi tiết :
Ta có $AD;BE$ và $CF$ là ba đường trung tuyến của tam giác $ABC$ và chúng cắt nhau tại $G$ nên $G$ là trọng tâm của tam giác \(ABC\) .
Theo tính chất ba đường trung tuyến của tam giác ta có : \(\dfrac{{BG}}{{BE}} = \dfrac{2}{3} \Rightarrow BG = \dfrac{2}{3}BE\).
Vậy số thích hợp điền vào chỗ chấm là \(\dfrac{2}{3}.\)
Câu 12
Điền số thích hợp vào chỗ chấm: $AG = \ldots GD$
Đáp án : A Lời giải chi tiết :
Theo câu trước ta có $G$ là trọng tâm của tam giác \(ABC\) .
Theo tính chất ba đường trung tuyến của tam giác ta có : \(\dfrac{{AG}}{{AD}} = \dfrac{2}{3} \Rightarrow \dfrac{{AG}}{{GD}} = 2 \Rightarrow AG = 2GD\).
Vậy số thích hợp điền vào chỗ chấm là $2.$
Câu 13 :
Điền số thích hợp vào chỗ chấm: “Trọng tâm của một tam giác cách mỗi đỉnh một khoảng bằng … độ dài đường trung tuyến đi qua đỉnh ấy”
Đáp án : A Lời giải chi tiết :
Định lý: Vị trí trọng tâm: Trọng tâm của một tam giác cách mỗi đỉnh một khoảng bằng \(\dfrac{2}{3}\) độ dài đường trung tuyến đi qua đỉnh ấy.
Số cần điền là \(\dfrac{2}{3}.\)
Câu 14 :
Chọn câu sai.
Đáp án : D Phương pháp giải :
Sử dụng kiến thức về ba đường trung tuyến.
“ Ba đường trung tuyến của một tam giác cùng đi qua một điểm. Điểm gặp nhau của ba đường trung tuyến gọi là trọng tâm của tam giác đó.”
Lời giải chi tiết :
+ Một tam giác chỉ có một trọng tâm nên đáp án D sai.
|