Trắc nghiệm Bài 4: Đường vuông góc và đường xiên Toán 7 Chân trời sáng tạoĐề bài
Câu 1 :
Câu 2 :
Cho góc \(\widehat {xOy} = {60^0},\) \(A\) là điểm trên tia \(Ox,\,B\) là điểm trên tia \(Oy\) \((A,B\) không trùng với \(O).\)
Chọn câu đúng nhất.
Câu 3 :
Cho \(\Delta ABC\) có \(\widehat C = {90^0}\), \(AC < BC\) , kẻ \(CH \bot AB\). Trên các cạnh $AB$ và $AC$ lấy tương ứng hai điểm $M$ và $N$ sao cho \(BM = BC,CN = CH\). Chọn câu đúng nhất.
Câu 4 :
Cho \(\Delta ABC\) vuông tại $A.$ Trên cạnh $AB$ và $AC$ lấy tương ứng hai điểm $D$ và $E$ ($D,E$ không trùng với các đỉnh của \(\Delta ABC\)). Chọn đáp án đúng nhất.
Câu 5 :
Cho \(\Delta ABC\) có $CE$ và $BD$ là hai đường cao. So sánh \(BD + CE\) và \(AB + AC\) ?
Câu 6 :
Cho \(\Delta ABC\) vuông tại $A,M$ là trung điểm của $AC.$ Gọi $D,E$ lần lượt là hình chiếu của $A$ và $C$ xuống đường thẳng $BM.$ So sánh \(BD + BE\) và $AB.$
Câu 7 :
Cho ba điểm \(A,\,B,\,C\) thẳng hàng, \(B\) nằm giữa \(A\) và \(C\). Trên đường thẳng vuông góc với \(AC\) tại \(B\) ta lấy điểm \(H\). Khi đó
Lời giải và đáp án
Câu 1 :
Đáp án : D Phương pháp giải :
Áp dụng định lý: Quan hệ giữa đường vuông góc và đường xiên.
Xét hai tam giác bằng nhau, suy ra cặp cạnh tương ứng bằng nhau.
Lời giải chi tiết :
Câu 2 :
Cho góc \(\widehat {xOy} = {60^0},\) \(A\) là điểm trên tia \(Ox,\,B\) là điểm trên tia \(Oy\) \((A,B\) không trùng với \(O).\)
Chọn câu đúng nhất.
Đáp án : D Phương pháp giải :
Kẻ tia phân giác \(Ot\) của \(\widehat {xOy}\) nên \(\widehat {xOt} = \widehat {yOt} = \dfrac{{\widehat {xOy}}}{2} = \dfrac{{{{60}^o}}}{2} = {30^o}.\)
Gọi \(I\) là giao của \(Ot\) và \(AB\). Kẻ \(AH \bot Ot, BK \bot Ot\)
Xét \(\Delta OAH\) có \(\widehat {AOH} = {30^o}\) nên \(OA = 2AH.\) Từ đó so sánh \(OA\) và \(AI\) (1)
Xét \(\Delta OBK\) có \(\widehat {BOK} = {30^o}\) nên \(OB = 2BK.\) Từ đó so sánh \(OB\) và \(BI\) (2)
Từ (1) và (2) ta so sánh được \(OA + OB\) với \(2AB.\) Từ đó xét khi nào dấu “=” xảy ra.
* Chú ý: Trong tam giác vuông, cạnh đối diện với góc \({30^o}\) bằng nửa cạnh huyền.
Lời giải chi tiết :
Câu 3 :
Cho \(\Delta ABC\) có \(\widehat C = {90^0}\), \(AC < BC\) , kẻ \(CH \bot AB\). Trên các cạnh $AB$ và $AC$ lấy tương ứng hai điểm $M$ và $N$ sao cho \(BM = BC,CN = CH\). Chọn câu đúng nhất.
Đáp án : D Phương pháp giải :
- Áp dụng tính chất tam giác cân.
- Áp dụng quan hệ đường vuông góc và đường xiên.
Lời giải chi tiết :
Câu 4 :
Cho \(\Delta ABC\) vuông tại $A.$ Trên cạnh $AB$ và $AC$ lấy tương ứng hai điểm $D$ và $E$ ($D,E$ không trùng với các đỉnh của \(\Delta ABC\)). Chọn đáp án đúng nhất.
Đáp án : B Phương pháp giải :
+ Góc tù là góc lớn nhất trong tam giác
+ Trong một tam giác, cạnh đối diện với góc lớn nhất là cạnh lớn nhất
Lời giải chi tiết :
Câu 5 :
Cho \(\Delta ABC\) có $CE$ và $BD$ là hai đường cao. So sánh \(BD + CE\) và \(AB + AC\) ?
Đáp án : A Lời giải chi tiết :
Câu 6 :
Cho \(\Delta ABC\) vuông tại $A,M$ là trung điểm của $AC.$ Gọi $D,E$ lần lượt là hình chiếu của $A$ và $C$ xuống đường thẳng $BM.$ So sánh \(BD + BE\) và $AB.$
Đáp án : A Phương pháp giải :
- Sử dụng quan hệ giữa đường vuông góc với đường xiên
- Sử dụng tính chất của trung điểm
- Chứng minh \(\Delta ADM = \Delta CEM\) (ch - gn)
Lời giải chi tiết :
Vì \(\Delta ABM\) vuông tại $A$ (gt) nên \(BA < BM\) (quan hệ giữa đường vuông góc và đường xiên). Mà \(BM = BD + DM\) nên \(BA < BD + DM\left( 1 \right)\) . Mặt khác, \(BM = BE - ME \) nên \(BA < BE - ME\left( 2 \right)\) Cộng hai vế của \(\left( 1 \right)\)và \(\left( 2 \right)\) ta được: \(2BA < BD + BE + MD - ME\left( 3 \right)\) Vì $M$ là trung điểm của $AC$ (gt) nên \(AM = MC\) (tính chất trung điểm) Xét tam giác vuông $ADM$ và tam giác vuông $CEM$ có: \(AM = MC\left( {cmt} \right)\) \(\widehat {AMD} = \widehat {EMC}\) (đối đỉnh) nên \(\Delta ADM = \Delta CEM\) (cạnh huyền – góc nhọn) suy ra \( MD = ME\left( 4 \right)\) (2 cạnh tương ứng) Từ \(\left( 3 \right)\)và \(\left( 4 \right) \) suy ra \(BD + BE > 2AB\)
Câu 7 :
Cho ba điểm \(A,\,B,\,C\) thẳng hàng, \(B\) nằm giữa \(A\) và \(C\). Trên đường thẳng vuông góc với \(AC\) tại \(B\) ta lấy điểm \(H\). Khi đó
Đáp án : C Phương pháp giải :
Áp dụng định lí quan hệ đường vuông góc với đường xiên.
Lời giải chi tiết :
|