ftw bet

Trắc nghiệm Bài 6: Thứ tự thực hiện các phép tính Toán 6 Cánh diều

Đề bài

Câu 1 : Thứ tự thực hiện phép tính nào sau đây là đúng đối với biểu thức không có dấu ngoặc?
  • A
    Cộng và trừ \( \to \) Nhân và chia \( \to \)Lũy thừa  
  • B
    Nhân và chia\( \to \)Lũy thừa\( \to \) Cộng và trừ
  • C
    Lũy thừa\( \to \) Nhân và chia \( \to \) Cộng và trừ 
  • D
    Cả ba đáp án A,B,C đều đúng
Câu 2 : Thứ tự thực hiện phép tính nào sau đây là đúng đối với biểu thức có dấu ngoặc?
  • A
    \(\left[ {} \right] \to \left( {} \right) \to \left\{ {} \right\}\)   
  • B
    \(\left( {} \right) \to \left[ {} \right] \to \left\{ {} \right\}\)          
  • C
    \(\left\{ {} \right\} \to \left[ {} \right] \to \left( {} \right)\)
  • D
    \(\left[ {} \right] \to \left\{ {} \right\} \to \left( {} \right)\)
Câu 3 :

Tính: \(1 + 12.3.5\)

  • A
    181
  • B
    195
  • C
    180
  • D
    15
Câu 4 :

Tính \(3.\left( {{2^3}.4 - 6.5} \right)\)

  • A
    6
  • B
    3
  • C
    2
  • D
    1
Câu 5 : Số tự nhiên $x$ cho bởi : \(5(x + 15) = {5^3}\) . Giá trị của $x$ là:
  • A
    $9$    
  • B
    $10$           
  • C
     $11$                          
  • D
    $12$
Câu 6 : Có bao nhiêu giá trị của \(x\) thỏa mãn \(240 - \left[ {23 + \left( {13 + 24.3 - x} \right)} \right] = 132?\)
  • A
    $3$             
  • B
    $2$           
  • C
    $1$         
  • D
    $4$
Câu 7 : Kết quả của phép tính \({3^4}.6 - \left[ {131 - {{\left( {15 - 9} \right)}^2}} \right]\)  là
  • A
    $319$          
  • B
    $931$     
  • C
    $193$               
  • D
    $391$
Câu 8 : Kết quả của phép toán \({2^4} - 50:25 + 13.7\) là
  • A
    $100$ 
  • B
    $95$ 
  • C
    $105$ 
  • D
    $80$ 

Lời giải và đáp án

Câu 1 : Thứ tự thực hiện phép tính nào sau đây là đúng đối với biểu thức không có dấu ngoặc?
  • A
    Cộng và trừ \( \to \) Nhân và chia \( \to \)Lũy thừa  
  • B
    Nhân và chia\( \to \)Lũy thừa\( \to \) Cộng và trừ
  • C
    Lũy thừa\( \to \) Nhân và chia \( \to \) Cộng và trừ 
  • D
    Cả ba đáp án A,B,C đều đúng

Đáp án : C

Lời giải chi tiết :
Đối với biểu thức không có dấu ngoặc thì thứ tự thực hiện phép tính đúng là : Lũy thừa\( \to \) Nhân và chia \( \to \) Cộng và trừ  
Câu 2 : Thứ tự thực hiện phép tính nào sau đây là đúng đối với biểu thức có dấu ngoặc?
  • A
    \(\left[ {} \right] \to \left( {} \right) \to \left\{ {} \right\}\)   
  • B
    \(\left( {} \right) \to \left[ {} \right] \to \left\{ {} \right\}\)          
  • C
    \(\left\{ {} \right\} \to \left[ {} \right] \to \left( {} \right)\)
  • D
    \(\left[ {} \right] \to \left\{ {} \right\} \to \left( {} \right)\)

Đáp án : B

Lời giải chi tiết :
Nếu biểu thức có các dấu ngoặc : ngoặc tròn ( ), ngoặc vuông [ ], ngoặc nhọn { }, ta thực hiện phép tính theo thứ tự : \(\left( {} \right) \to \left[ {} \right] \to \left\{ {} \right\}\)
Câu 3 :

Tính: \(1 + 12.3.5\)

  • A
    181
  • B
    195
  • C
    180
  • D
    15

Đáp án : A

Phương pháp giải :
Thực hiện theo quy tắc:

Nhân và chia \( \to \)  cộng và trừ.

Lời giải chi tiết :

⭕\(1 + 12.3.5 = 1+\left( {12.3} \right).5 = 1 + 36.5 = 1 + 180 = 181\)

Chú ý

🅘Nếu lấy 1+12 trước rồi nhân tiếp với 3 và 5 thì sẽ được 195 vì thế mà chọn nhầm đáp án B.

Câu 4 :

Tính \(3.\left( {{2^3}.4 - 6.5} \right)\)

  • A
    6
  • B
    3
  • C
    2
  • D
    1

Đáp án : A

Phương pháp giải :

Thực hiện phép tính trong ngoặc tròn ( ) trước: Lũy thừa \( \to \)  nhân và chia \( \to \)  cộng và trừ.

Lấy kết quả trong ngoặc nhân với 3.
Lời giải chi tiết :

🍒\(3.\left( {{2^3}.4 - 6.5} \right) = 3.\left( {8.4 - 6.5} \right)\)\( = 3.\left( {32 - 30} \right) = 3.2 = 6\)

Chú ý

ဣMột số em tính xong kết quả trong ngoặc có thể quên nhân thêm 3 bên ngoài và chọn sai đáp án (đáp án C).

Câu 5 : Số tự nhiên $x$ cho bởi : \(5(x + 15) = {5^3}\) . Giá trị của $x$ là:
  • A
    $9$    
  • B
    $10$           
  • C
     $11$                          
  • D
    $12$

Đáp án : B

Phương pháp giải :
+ Tính vế phải sau đó tìm thừa số chưa biết bằng cách lấy tích chia cho thừa số đã biết. + Sử dụng mối quan hệ giữa số hạng và tổng để tìm $x$
Lời giải chi tiết :
\(\begin{array}{l}5(x + 15) = {5^3}\\5(x + 15) = 125\\x + 15 = 125:5\\x + 15\, = 25\\x\,\, = 25 - 15\\x\, = 10.\end{array}\)
Câu 6 : Có bao nhiêu giá trị của \(x\) thỏa mãn \(240 - \left[ {23 + \left( {13 + 24.3 - x} \right)} \right] = 132?\)
  • A
    $3$             
  • B
    $2$           
  • C
    $1$         
  • D
    $4$

Đáp án : C

Phương pháp giải :
+ Tìm số trừ bằng cách lấy số bị trừ trừ đi hiệu. + Tìm số hạng bằng tổng trừ đi số hạng đã biết.
Lời giải chi tiết :
Ta có \(240 - \left[ {23 + \left( {13 + 24.3 - x} \right)} \right] = 132\) \(23 + \left( {13 + 72 - x} \right) = 240 - 132\) \(23 + \left( {85 - x} \right) = 108\) \(85 - x = 108 - 23\) \(85 - x = 85\) \(x = 85 - 85\) \(x = 0.\)

Vậy có một giá trị \(x = 0\) thỏa mãn đề bài.

Câu 7 : Kết quả của phép tính \({3^4}.6 - \left[ {131 - {{\left( {15 - 9} \right)}^2}} \right]\)  là
  • A
    $319$          
  • B
    $931$     
  • C
    $193$               
  • D
    $391$

Đáp án : D

Phương pháp giải :
Thực hiện phép tính trong ngoặc đơn trước rồi tính trong ngoặc vuông. Sau đó là phép lũy thừa, nhân và trừ các kết quả.
Lời giải chi tiết :
Ta có \({3^4}.6 - \left[ {131 - {{\left( {15 - 9} \right)}^2}} \right]\) \( = {3^4}.6 - \left( {131 - {6^2}} \right)\) \( = 81.6 - \left( {131 - 36} \right)\) \( = 486 - 95 = 391.\)
Câu 8 : Kết quả của phép toán \({2^4} - 50:25 + 13.7\) là
  • A
    $100$ 
  • B
    $95$ 
  • C
    $105$ 
  • D
    $80$ 

Đáp án : C

Phương pháp giải :
Thực hiện phép tính nâng lên lũy thừa rồi đến nhân chia cuối cùng là cộng trừ.
Lời giải chi tiết :
Ta có \({2^4} - 50:25 + 13.7\)\( = 16 - 2 + 91 = 14 + 91 = 105\)
close
{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|