ftw bet

Giải bài 10 trang 18 sách bài tập toán 12 - Chân trời sáng tạo

Cho hình thang cân có đáy nhỏ và hai cạnh bên bằng nhau và bằng 5. Tìm diện tích lớn nhất của hình thang cân đó.

🥃Tổng hợp đề thi học kì 2 lớp 12 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Hoá - Sinh - Sử - Địa
Quảng cáo

Đề bài

Cho hình thang cân có đáy nhỏ và hai cạnh bên bằng nhau và bằng 5. Tìm diện tích lớn nhất của hình thang cân đó.

Phương pháp giải - Xem chi tiết

Sử dụng công thức tính diện tích hình thang để tính diện tích \(S\left( x \right)\), sau đó tìm giá trị lớn nhất của hàm số \(S\left( x \right)\).

Lời giải chi tiết

Xét hình thang cân \(ABCD\) có đáy nhỏ \(AB\), gọi \(H,K\) lần lượt là chân đường cao kẻ từ \(A\) và \(B\) xuống \(CD\). Ta có: \(C{\rm{D}} = 5 + 2{\rm{x}},AH = \sqrt {A{{\rm{D}}^2} - D{H^2}}  = \sqrt {{5^2} - {x^2}}  = \sqrt {25 - {x^2}} \) Diện tích hình thang là: \(S = \frac{1}{2}\left( {AB + C{\rm{D}}} \right).AH = \frac{1}{2}\left( {5 + 5 + 2{\rm{x}}} \right).\sqrt {25 - {x^2}}  = \left( {5 + {\rm{x}}} \right).\sqrt {25 - {x^2}} \) Do \(DH < AD\) nên \({\rm{x}} < 5\). Xét hàm số \(S\left( x \right) = \left( {5 + {\rm{x}}} \right).\sqrt {25 - {x^2}} \) trên nửa khoảng \(\left[ {0;5} \right)\). Ta có: \(S'\left( x \right) = {\left( {5 + {\rm{x}}} \right)^\prime }.\sqrt {25 - {x^2}}  + \left( {5 + {\rm{x}}} \right).{\left( {\sqrt {25 - {x^2}} } \right)^\prime } = \sqrt {25 - {x^2}}  + \left( {5 + {\rm{x}}} \right).\frac{{ - {\rm{x}}}}{{\sqrt {25 - {x^2}} }} = \frac{{ - 2{{\rm{x}}^2} - 5x + 25}}{{\sqrt {25 - {x^2}} }}\) \(S'\left( x \right) = 0 \Leftrightarrow x = \frac{5}{2}\) hoặc \(x =  - 5\) (loại) Bảng biến thiên của hàm số trên nửa khoảng \(\left[ {0;5} \right)\):

Từ bảng biến thiên, ta thấy \(\mathop {\max }\limits_{\left[ {0;5} \right)} S\left( x \right) = S\left( {\frac{5}{2}} \right) = \frac{{75\sqrt 3 }}{4}\). Vậy hình thang cân \(ABCD\) có diện tích lớn nhất bằng \(\frac{{75\sqrt 3 }}{4}\).

Quảng cáo

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

close
{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|