Trắc nghiệm Bài 8: Đường vuông góc và đường xiên Toán 7 Cánh diềuĐề bài
Câu 1 :
Cho góc \(\widehat {xOy} = {60^0},\) \(A\) là điểm trên tia \(Ox,\,B\) là điểm trên tia \(Oy\) \((A,B\) không trùng với \(O).\)
Chọn câu đúng nhất.
Câu 2 :
Cho \(\Delta ABC\) có \(\widehat C = {90^0}\), \(AC < BC\) , kẻ \(CH \bot AB\). Trên các cạnh $AB$ và $AC$ lấy tương ứng hai điểm $M$ và $N$ sao cho \(BM = BC,CN = CH\). Chọn câu đúng nhất.
Cho \(\Delta ABC\) có \({90^0} > \widehat B > \widehat C\). Kẻ \(AH \bot BC\left( {H \in BC} \right)\). Gọi $M$ là một điểm nằm giữa $H$ và $B,$ $N$ thuộc tia đối của tia $CB.$
Câu 3
So sánh \(HB\) và \(HC.\)
Câu 4
Chọn câu đúng.
Câu 5 :
Cho \(\Delta ABC\) vuông tại $A.$ Trên cạnh $AB$ và $AC$ lấy tương ứng hai điểm $D$ và $E$ ($D,E$ không trùng với các đỉnh của \(\Delta ABC\)). Chọn đáp án đúng nhất.
Câu 6 :
Cho \(\Delta ABC\) có $CE$ và $BD$ là hai đường cao. So sánh \(BD + CE\) và \(AB + AC\) ?
Câu 7 :
Cho \(\Delta ABC\) vuông tại $A,M$ là trung điểm của $AC.$ Gọi $D,E$ lần lượt là hình chiếu của $A$ và $C$ xuống đường thẳng $BM.$ So sánh \(BD + BE\) và $AB.$
Câu 8 :
Trong tam giác \(ABC\) có chiều cao \(AH\)
Câu 9 :
Cho ba điểm \(A,\,B,\,C\) thẳng hàng, \(B\) nằm giữa \(A\) và \(C\). Trên đường thẳng vuông góc với \(AC\) tại \(B\) ta lấy điểm \(H\). Khi đó
Câu 10 :
Em hãy chọn phát biểu sai trong các phát biểu sau:
Câu 11 :
Cho hình vẽ sau:
Lời giải và đáp án
Câu 1 :
Cho góc \(\widehat {xOy} = {60^0},\) \(A\) là điểm trên tia \(Ox,\,B\) là điểm trên tia \(Oy\) \((A,B\) không trùng với \(O).\)
Chọn câu đúng nhất.
Đáp án : D Phương pháp giải :
Kẻ tia phân giác \(Ot\) của \(\widehat {xOy}\) nên \(\widehat {xOt} = \widehat {yOt} = \dfrac{{\widehat {xOy}}}{2} = \dfrac{{{{60}^o}}}{2} = {30^o}.\)
Gọi \(I\) là giao của \(Ot\) và \(AB\); \(H,\,K\) lần lượt là hình chiếu của \(A,\,B\) trên tia \(Ot\).
Xét \(\Delta OAH\) có \(\widehat {AOH} = {30^o}\) nên \(OA = 2AH.\) Từ đó so sánh \(OA\) và \(AI\) (1)
Xét \(\Delta OBK\) có \(\widehat {BOK} = {30^o}\) nên \(OB = 2BK.\) Từ đó so sánh \(OB\) và \(BI\) (2)
Từ (1) và (2) ta so sánh được \(OA + OB\) với \(2AB.\) Từ đó xét khi nào dấu “=” xảy ra.
* Chú ý: Trong tam giác vuông, cạnh đối diện với góc \({30^o}\) bằng nửa cạnh huyền.
Lời giải chi tiết :
![]()
Câu 2 :
Cho \(\Delta ABC\) có \(\widehat C = {90^0}\), \(AC < BC\) , kẻ \(CH \bot AB\). Trên các cạnh $AB$ và $AC$ lấy tương ứng hai điểm $M$ và $N$ sao cho \(BM = BC,CN = CH\). Chọn câu đúng nhất.
Đáp án : D Phương pháp giải :
- Áp dụng tính chất tam giác cân.
- Áp dụng quan hệ đường vuông góc và đường xiên.
Lời giải chi tiết :
Cho \(\Delta ABC\) có \({90^0} > \widehat B > \widehat C\). Kẻ \(AH \bot BC\left( {H \in BC} \right)\). Gọi $M$ là một điểm nằm giữa $H$ và $B,$ $N$ thuộc tia đối của tia $CB.$
Câu 3
So sánh \(HB\) và \(HC.\)
Đáp án : A Phương pháp giải :
Áp dụng các định lý về quan hệ giữa đường xiên và hình chiếu, quan hệ giữa cạnh và góc trong tam giác.
Lời giải chi tiết :
Câu 4
Chọn câu đúng.
Đáp án : A Phương pháp giải :
Áp dụng các định lý sau:
Quan hệ giữa đường xiên và hình chiếu.
Quan hệ giữa góc và cạnh trong tam giác.
Lời giải chi tiết :
Câu 5 :
Cho \(\Delta ABC\) vuông tại $A.$ Trên cạnh $AB$ và $AC$ lấy tương ứng hai điểm $D$ và $E$ ($D,E$ không trùng với các đỉnh của \(\Delta ABC\)). Chọn đáp án đúng nhất.
Đáp án : B Lời giải chi tiết :
Câu 6 :
Cho \(\Delta ABC\) có $CE$ và $BD$ là hai đường cao. So sánh \(BD + CE\) và \(AB + AC\) ?
Đáp án : A Lời giải chi tiết :
Câu 7 :
Cho \(\Delta ABC\) vuông tại $A,M$ là trung điểm của $AC.$ Gọi $D,E$ lần lượt là hình chiếu của $A$ và $C$ xuống đường thẳng $BM.$ So sánh \(BD + BE\) và $AB.$
Đáp án : A Lời giải chi tiết :
Câu 8 :
Trong tam giác \(ABC\) có chiều cao \(AH\)
Đáp án : D Lời giải chi tiết :
Câu 9 :
Cho ba điểm \(A,\,B,\,C\) thẳng hàng, \(B\) nằm giữa \(A\) và \(C\). Trên đường thẳng vuông góc với \(AC\) tại \(B\) ta lấy điểm \(H\). Khi đó
Đáp án : C Lời giải chi tiết :
Câu 10 :
Em hãy chọn phát biểu sai trong các phát biểu sau:
Đáp án : C Lời giải chi tiết :
Trong các phát biểu ở ý A, B, và D đều đúng. Ý C sai vì: trong hai đường xiên kẻ từ một điểm nằm ngoài một đường thẳng đến đường thẳng đó thì đường xiên nào lớn hơn thì có hình chiếu lớn hơn.
Câu 11 :
Cho hình vẽ sau:
Đáp án : D Phương pháp giải :
Áp dụng các định lý sau:
- Quan hệ giữa đường vuông góc và đường xiên, đường xiên và hình chiếu.
- Quan hệ giữa góc và cạnh trong tam giác.
Lời giải chi tiết :
|