Trắc nghiệm Bài 2: Tia phân giác của một góc Toán 7 Cánh diềuĐề bài
Câu 1 :
Chọn phát biểu sai trong các phát biểu sau:
Câu 2 :
Cho $Ot$ là tia phân giác của \(\widehat {xOy}\). Biết \(\widehat {xOy} = {100^0}\), số đo của \(\widehat {xOt}\) là:
Câu 3 :
Cho \(\widehat {xOy}\) là góc vuông có tia On là phân giác, số đo của \(\widehat {xOn}\) là:
Câu 4 :
Cho tia \(On\) là tia phân giác của \(\widehat {mOt}\). Biết \(\widehat {mOn} = {70^0}\), số đo của \(\widehat {mOt}\) là:
Câu 5 :
Cho \(\widehat {AOB} = 90^\circ \) và tia \(OB\) là tia phân giác của góc \(AOC.\) Khi đó góc \(AOC\) là
Câu 6 :
Cho \(\widehat {AOC} = {60^0}\). Vẽ tia \(OB\) sao cho \(OA\) là tia phân giác của \(\widehat {BOC}\). Tính số đo của \(\widehat {AOB}\) và \(\widehat {BOC}\).
Câu 7 :
Cho \(\widehat {AOB} = {110^0}\) và \(\widehat {AOC} = {55^0}\) sao cho \(\widehat {AOB}\) và \(\widehat {AOC}\) không kề nhau. Chọn câu sai.
Câu 8 :
Cho \(\widehat {xOy}\) và \(\widehat {yOz}\) là hai góc kề bù. Biết \(\widehat {xOy} = 120^\circ \) và tia \(Ot\) là tia phân giác của \(\widehat {yOz}.\) Tính số đo góc \(xOt.\)
Câu 9 :
Cho góc \(AOB\) và tia phân giác \(OC\) của góc đó. Vẽ tia phân giác \(OM\) của góc \(BOC.\) Biết \(\widehat {BOM} = 35^\circ .\) Tính số đo góc \(AOB.\)
Câu 10 :
Cho góc bẹt \(xOy\). Trên cùng một nửa mặt phẳng bờ \(xy\) vẽ các tia \(Om;On\) sao cho \(\widehat {xOm} = a^\circ \,\left( {a < 180} \right)\) và \(\widehat {yOn} = 70^\circ .\) Với giá trị nào của \(a\) thì tia \(On\) là tia phân giác của \(\widehat {yOm}\).
Câu 11 :
Cho hai góc kề bù \(\widehat {xOy};\,\widehat {xOz}\). Vẽ tia \(Ot\) là phân giác \(\widehat {xOy}\) và tia \(Ot'\) là phân giác \(\widehat {xOz}\). Tính \(\widehat {tOt'}\).
Cho \(\widehat {AOB},\;\widehat {AOC}\) kề với nhau. Biết \(\widehat {AOB} = \widehat {AOC} = {65^0}\),
Câu 12
Chọn câu đúng.
Câu 13
Số đo góc \(BOC\) là
Cho hai góc kề bù \(\widehat {xOy}\) và \(\widehat {yOz}\) sao cho \(\widehat {xOy} = {120^0}\). Gọi Ot là tia phân giác của \(\widehat {xOy}\), vẽ tia Om trong góc \(\widehat {yOz}\) sao cho \(\widehat {tOm} = {90^0}\).
Câu 14
Tính \(\widehat {yOm}\).
Câu 15
Tia \(Om\) là tia phân giác của góc nào?
Cho góc \(xOy\) bằng \(110^\circ \) có tia \(Oz\) là tia phân giác. Vẽ các tia \(Om;On\) nằm trong góc \(xOy\) sao cho \(\widehat {xOm} = \widehat {yOn} = 30^\circ \).
Câu 16
Tính góc \(zOn\).
Câu 17
Chọn câu đúng.
Câu 18 :
Hai đường thẳng \(MN\) và \(PQ\) cắt nhau tại \(O\), tạo thành \(\widehat {MOP} = 50^\circ \) . Cho tia OK là tia phân giác của \(\widehat {PON}\). Chọn khẳng định sai.
Câu 19 :
Hai đường thẳng \(xy\) và \(x'y'\) cắt nhau tại \(O.\) Biết \(\widehat {xOx'} = {70^o}\). \(Ot\) là tia phân giác của góc xOx’. \(Ot'\) là tia đối của tia \(Ot.\) Tính số đo góc \(yOt'.\)
Câu 20 :
Cho \(\widehat {xOy},\widehat {yOz}\) là 2 góc kề bù. Góc xOy có số đo là 60o꧋ . Kẻ Om và On lần lượt là tia phân giác của 2 góc đó. Tính số đo góc mOn
Câu 21 :
Hai đường thẳng \(AB\) và \(CD\) cắt nhau tại \(O\). Biết \(\widehat {AOD} - \widehat {AOC} = 60^\circ \) . Gọi \(OM\) là phân giác \(\widehat {AOC}\) và \(ON\) là tia đối của tia \(OM\). Tính \(\widehat {BON}\) và \(\widehat {DON}.\)
Lời giải và đáp án
Câu 1 :
Chọn phát biểu sai trong các phát biểu sau:
Đáp án : C Lời giải chi tiết :
Nếu \(\widehat {xOt} = \widehat {yOt}\) và tia \(Ot\) nằm giữa hai tia \(Ox;Oy\) thì tia \(Ot\) là tia phân giác của \(\widehat {xOy}\) nên C sai, D đúng.
Câu 2 :
Cho $Ot$ là tia phân giác của \(\widehat {xOy}\). Biết \(\widehat {xOy} = {100^0}\), số đo của \(\widehat {xOt}\) là:
Đáp án : C Phương pháp giải :
Nếu tia \(Ot\) là tia phân giác của \(\widehat {xOy}\) thì \(\widehat {xOt} = \widehat {yOt} = \dfrac{{\widehat {xOy}}}{2}\)
Lời giải chi tiết :
Vì tia \(Ot\) là tia phân giác của \(\widehat {xOy}\) thì \(\widehat {xOt} = \widehat {yOt} = \dfrac{{\widehat {xOy}}}{2} = \dfrac{{100^\circ }}{2} = 50^\circ \)
Câu 3 :
Cho \(\widehat {xOy}\) là góc vuông có tia On là phân giác, số đo của \(\widehat {xOn}\) là:
Đáp án : C Phương pháp giải :
+ Góc vuông là góc có số đo bằng \(90^\circ \)
+ Sử dụng: Nếu tia \(Ot\) là tia phân giác của \(\widehat {xOy}\) thì \(\widehat {xOt} = \widehat {yOt} = \dfrac{{\widehat {xOy}}}{2}\)
Lời giải chi tiết :
Vì \(On\) là tia phân giác của \(\widehat {xOy}\) nên \(\widehat {xOn} = \widehat {nOy} = \dfrac{{\widehat {xOy}}}{2} = \dfrac{{90^\circ }}{2} = 45^\circ \)
Câu 4 :
Cho tia \(On\) là tia phân giác của \(\widehat {mOt}\). Biết \(\widehat {mOn} = {70^0}\), số đo của \(\widehat {mOt}\) là:
Đáp án : A Phương pháp giải :
Sử dụng: Nếu tia \(Ot\) là tia phân giác của \(\widehat {xOy}\) thì \(\widehat {xOt} = \widehat {yOt} = \dfrac{{\widehat {xOy}}}{2}\)
Lời giải chi tiết :
Vì tia \(On\) là tia phân giác của \(\widehat {mOt}\) nên \(\widehat {mOn} = \widehat {nOt} = \dfrac{{\widehat {mOt}}}{2}\)
\( \Rightarrow \widehat {mOt} = 2.\widehat {mOn} = 2.70^\circ = 140^\circ \).
Câu 5 :
Cho \(\widehat {AOB} = 90^\circ \) và tia \(OB\) là tia phân giác của góc \(AOC.\) Khi đó góc \(AOC\) là
Đáp án : D Phương pháp giải :
Sử dụng: Nếu tia \(Ot\) là tia phân giác của \(\widehat {xOy}\) thì \(\widehat {xOt} = \widehat {yOt} = \dfrac{{\widehat {xOy}}}{2}\)
Lời giải chi tiết :
![]()
Câu 6 :
Cho \(\widehat {AOC} = {60^0}\). Vẽ tia \(OB\) sao cho \(OA\) là tia phân giác của \(\widehat {BOC}\). Tính số đo của \(\widehat {AOB}\) và \(\widehat {BOC}\).
Đáp án : D Phương pháp giải :
Sử dụng: Nếu tia \(Ot\) là tia phân giác của \(\widehat {xOy}\) thì \(\widehat {xOt} = \widehat {yOt} = \dfrac{{\widehat {xOy}}}{2}\)
Lời giải chi tiết :
![]()
Câu 7 :
Cho \(\widehat {AOB} = {110^0}\) và \(\widehat {AOC} = {55^0}\) sao cho \(\widehat {AOB}\) và \(\widehat {AOC}\) không kề nhau. Chọn câu sai.
Đáp án : C Phương pháp giải :
+ Sử dụng dấu hiệu nhận biết tia nằm giữa hai tia
+ Tính góc \(BOC\)
+ Sử dụng định nghĩa tia phân giác
Lời giải chi tiết :
![]()
Câu 8 :
Cho \(\widehat {xOy}\) và \(\widehat {yOz}\) là hai góc kề bù. Biết \(\widehat {xOy} = 120^\circ \) và tia \(Ot\) là tia phân giác của \(\widehat {yOz}.\) Tính số đo góc \(xOt.\)
Đáp án : B Phương pháp giải :
+ Sử dụng: Hai góc kề bù có tổng số đo bằng \(180^\circ \) và tính chất tia phân giác của một góc để tính toán.
Lời giải chi tiết :
![]()
Câu 9 :
Cho góc \(AOB\) và tia phân giác \(OC\) của góc đó. Vẽ tia phân giác \(OM\) của góc \(BOC.\) Biết \(\widehat {BOM} = 35^\circ .\) Tính số đo góc \(AOB.\)
Đáp án : C Phương pháp giải :
Sử dụng: Nếu tia \(Ot\) là tiam phân giác của \(\widehat {xOy}\) thì \(\widehat {xOt} = \widehat {yOt} = \dfrac{{\widehat {xOy}}}{2}\)
Lời giải chi tiết :
![]()
Câu 10 :
Cho góc bẹt \(xOy\). Trên cùng một nửa mặt phẳng bờ \(xy\) vẽ các tia \(Om;On\) sao cho \(\widehat {xOm} = a^\circ \,\left( {a < 180} \right)\) và \(\widehat {yOn} = 70^\circ .\) Với giá trị nào của \(a\) thì tia \(On\) là tia phân giác của \(\widehat {yOm}\).
Đáp án : D Phương pháp giải :
Sử dụng tính chất tia phân giác và tính chất hai góc kề bù.
Lời giải chi tiết :
![]()
Câu 11 :
Cho hai góc kề bù \(\widehat {xOy};\,\widehat {xOz}\). Vẽ tia \(Ot\) là phân giác \(\widehat {xOy}\) và tia \(Ot'\) là phân giác \(\widehat {xOz}\). Tính \(\widehat {tOt'}\).
Đáp án : D Phương pháp giải :
+ Sử dụng tính chất hai góc kề bù và tính chất tia phân giác của một góc để tính toán
Lời giải chi tiết :
Cho \(\widehat {AOB},\;\widehat {AOC}\) kề với nhau. Biết \(\widehat {AOB} = \widehat {AOC} = {65^0}\),
Câu 12
Chọn câu đúng.
Đáp án : C Phương pháp giải :
Sử dụng định nghĩa tia phân giác của một góc
Nếu \(\widehat {xOt} = \widehat {yOt}\) và tia \(Ot\) nằm giữa hai tia \(Ox;Oy\) thì tia $Ot$ là tia phân giác của \(\widehat {xOy}\).
Lời giải chi tiết :
![]() Câu 13
Số đo góc \(BOC\) là
Đáp án : D Phương pháp giải :
Sử dụng: Nếu tia \(Ot\) là tia phân giác của \(\widehat {xOy}\) thì \(\widehat {xOt} = \widehat {yOt} = \dfrac{{\widehat {xOy}}}{2}\)
Lời giải chi tiết :
![]()
Cho hai góc kề bù \(\widehat {xOy}\) và \(\widehat {yOz}\) sao cho \(\widehat {xOy} = {120^0}\). Gọi Ot là tia phân giác của \(\widehat {xOy}\), vẽ tia Om trong góc \(\widehat {yOz}\) sao cho \(\widehat {tOm} = {90^0}\).
Câu 14
Tính \(\widehat {yOm}\).
Đáp án : A Phương pháp giải :
+ Sử dụng tính chất tia phân giác để tính \(\widehat {tOy}\)
+ Sử dụng tính chất cộng góc để tính \(\widehat {yOz}\).
Lời giải chi tiết :
![]() Câu 15
Tia \(Om\) là tia phân giác của góc nào?
Đáp án : D Phương pháp giải :
Sử dụng tổng hai góc kề bù bằng \(180^\circ \) để tính \(\widehat {yOz}\)
Sử dụng công thức cộng góc để tính \(\widehat {mOz}\)
Sử dụng định nghĩa tia phân giác để kết luận.
Lời giải chi tiết :
![]()
Cho góc \(xOy\) bằng \(110^\circ \) có tia \(Oz\) là tia phân giác. Vẽ các tia \(Om;On\) nằm trong góc \(xOy\) sao cho \(\widehat {xOm} = \widehat {yOn} = 30^\circ \).
Câu 16
Tính góc \(zOn\).
Đáp án : C Phương pháp giải :
+ Sử dụng tính chất tia phân giác để tính \(\widehat {yOz}\)
+ Sử dụng dấu hiệu tia nằm giữa hai tia và tính chất cộng góc để tính \(\widehat {zOn}\)
Lời giải chi tiết :
![]() Câu 17
Chọn câu đúng.
Đáp án : B Phương pháp giải :
Tính góc \(mOz\) từ đó sử dụng định nghĩa để suy ra tia phân giác của một góc.
Lời giải chi tiết :
![]()
Câu 18 :
Hai đường thẳng \(MN\) và \(PQ\) cắt nhau tại \(O\), tạo thành \(\widehat {MOP} = 50^\circ \) . Cho tia OK là tia phân giác của \(\widehat {PON}\). Chọn khẳng định sai.
Đáp án : B Phương pháp giải :
+ Sử dụng: Tổng hai góc kề bù bằng \(180^\circ .\)
+ Sử dụng tính chất: Hai góc đối đỉnh thì bằng nhau
+ Sử dụng tính chất tia phân giác của một góc
Lời giải chi tiết :
Câu 19 :
Hai đường thẳng \(xy\) và \(x'y'\) cắt nhau tại \(O.\) Biết \(\widehat {xOx'} = {70^o}\). \(Ot\) là tia phân giác của góc xOx’. \(Ot'\) là tia đối của tia \(Ot.\) Tính số đo góc \(yOt'.\)
Đáp án : A Phương pháp giải :
+ Sử dụng: Tổng hai góc kề bù bằng \(180^\circ .\)
+ Sử dụng tính chất: Hai góc đối đỉnh thì bằng nhau
+ Sử dụng tính chất tia phân giác của một góc
Lời giải chi tiết :
Câu 20 :
Cho \(\widehat {xOy},\widehat {yOz}\) là 2 góc kề bù. Góc xOy có số đo là 60o♚ . Kẻ Om và On lần lượt là tia phân giác của 2 góc đó. Tính số đo góc mOn
Đáp án : D Phương pháp giải :
+ Sử dụng: Tổng hai góc kề bù bằng \(180^\circ .\)
+ Sử dụng tính chất tia phân giác của một góc
Lời giải chi tiết :
Chú ý
2 tia phân giác của 2 góc kề bù thì vuông góc với nhau.
Câu 21 :
Hai đường thẳng \(AB\) và \(CD\) cắt nhau tại \(O\). Biết \(\widehat {AOD} - \widehat {AOC} = 60^\circ \) . Gọi \(OM\) là phân giác \(\widehat {AOC}\) và \(ON\) là tia đối của tia \(OM\). Tính \(\widehat {BON}\) và \(\widehat {DON}.\)
Đáp án : B Phương pháp giải :
+ Tính số đo góc AOC nhờ bài toán biết tổng và hiệu.
+ Sử dụng tính chất tia phân giác tính các góc \(\widehat {AOM};\widehat {COM}\)
+ Sử dụng tính chất hai góc đối đỉnh để suy ra hai góc \(\widehat {BON}\) và \(\widehat {DON}.\)
Lời giải chi tiết :
|