Giải bài tập 2 trang 39 SGK Toán 12 tập 2 - Cánh diềuThể tích khối tròn xoay tạo thành khi cho hình phẳng giới hạn bởi đồ thị hàm số (f(x) = sqrt x ), trục hoành và hai đường thẳng x = 0, x = 2 quay quanh trục Ox là: A. (pi intlimits_0^2 {sqrt x dx} ) B. (pi intlimits_0^2 {xdx} ) C. (intlimits_0^2 {sqrt x dx} ) D. (intlimits_0^2 {xdx} )
Gửi góp ý cho ufa999.cc và nhận về những phần quà hấp dẫn
Quảng cáo
Đề bài Thể tích khối tròn xoay tạo thành khi cho hình phẳng giới hạn bởi đồ thị hàm số \(f(x) = \sqrt x \), trục hoành và hai đường thẳng x = 0, x = 2 quay quanh trục Ox là: A. \(\pi \int\limits_0^2 {\sqrt x dx} \) B. \(\pi \int\limits_0^2 {xdx} \) C. \(\int\limits_0^2 {\sqrt x dx} \) D. \(\int\limits_0^2 {xdx} \)Phương pháp giải - Xem chi tiết
Cho hàm số y = f(x) liên tục, không âm trên đoạn [a;b]. Hình phẳng (H) giới hạn bởi đồ thị hàm số y = f(x), trục hoành và hai đường thẳng x = a, x = b quay quanh trục Ox tạo thành một khối tròn xoay có thể tích bằng \(V = \pi \int\limits_a^b {{{[f(x)]}^2}dx} \)
Lời giải chi tiết Thể tích khối tròn xoay đó là: \(V = \pi \int\limits_0^2 {{{\left( {\sqrt x } \right)}^2}dx} = \pi \int\limits_0^2 {xdx} \)Chọn B
Quảng cáo
Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí |