Giải bài 9.23 trang 55 sách bài tập toán 9 - Kết nối tri thức tập 2Cho tứ giác ABCD nội tiếp đường tròn (O), hai đường chéo AC và BD cắt nhau tại điểm E. Tính số đo các góc của tứ giác ABCD, biết rằng (widehat {AEB} = {80^o},widehat {ABE} = {70^o}) và (widehat {ECB} = {50^o}).
Toán - Văn - Anh
Quảng cáo
Đề bài Cho tứ giác ABCD nội tiếp đường tròn (O), hai đường chéo AC và BD cắt nhau tại điểm E. Tính số đo các góc của tứ giác ABCD, biết rằng \(\widehat {AEB} = {80^o},\widehat {ABE} = {70^o}\) và \(\widehat {ECB} = {50^o}\).Phương pháp giải - Xem chi tiết
+ \(\widehat {BAE} = {180^o} - \widehat {AEB} - \widehat {ABE}\).
+ Ta có: \(\widehat {ACD} = \widehat {ABE} = {70^o}\),
\(\widehat {ADB} = \widehat {ECB} = {50^o}\),
\(\widehat {CDB} = \widehat {BAC} = {30^o}\).
+ \(\widehat {BCD} = \widehat {ECB} + \widehat {ACD} = {120^o},\)
\(\widehat {CDA} = \widehat {CDB} + \widehat {ADB} = {80^o}\).
+ Vì tứ giác ABCD nội tiếp đường tròn (O) nên \(\widehat {DAB} = {180^o} - \widehat {BCD},\widehat {ABC} = {180^o} - \widehat {CDA}\).
Lời giải chi tiết
Quảng cáo
Tham Gia Group Dành Cho Lớp 9 - Ôn Thi Vào Lớp 10 Miễn Phí |