Giải bài 9.24 trang 56 sách bài tập toán 9 - Kết nối tri thức tập 2Cho tứ giác ABCD nội tiếp đường tròn (O) sao cho hai tia AB và DC cắt nhau tại điểm K, hai đường chéo AC và BD cắt nhau tại điểm H. Kí hiệu $oversetfrown{AD}$ là cung AD không chứa điểm B và $oversetfrown{BC}$ là cung BC không chứa A. Chứng minh rằng: a) (widehat {BKC} = frac{1}{2})(sđ$oversetfrown{AD}$-sđ$oversetfrown{BC}$); b) (widehat {BHC} = frac{1}{2})(sđ$oversetfrown{AD}$+sđ$oversetfrown{BC}$).
Toán - Văn - Anh
Quảng cáo
Đề bài Cho tứ giác ABCD nội tiếp đường tròn (O) sao cho hai tia AB và DC cắt nhau tại điểm K, hai đường chéo AC và BD cắt nhau tại điểm H. Kí hiệu $\overset\frown{AD}$ là cung AD không chứa điểm B và $\overset\frown{BC}$ là cung BC không chứa A. Chứng minh rằng: a) \(\widehat {BKC} = \frac{1}{2}\)(sđ$\overset\frown{AD}$ - sđ$\overset\frown{BC}$); b) \(\widehat {BHC} = \frac{1}{2}\)(sđ$\overset\frown{AD}$ + sđ$\overset\frown{BC}$).Phương pháp giải - Xem chi tiết
a) Chứng minh \(\widehat {ABD} = \frac{1}{2}\)sđ$\overset\frown{AD}$, \(\widehat {BDC} = \frac{1}{2}\)sđ$\overset\frown{BC}$ nên \(\widehat {BKC} = \widehat {ABD} - \widehat {BDK} = \frac{1}{2}\)(sđ$\overset\frown{AD}$-sđ$\overset\frown{BC}$).
b) Chứng minh \(\widehat {BAC} = \frac{1}{2}\)sđ$\overset\frown{BC}$. Suy ra \(\widehat {BHC} = {180^o} - \widehat {AHB} = \widehat {ABH} + \widehat {BAH} = \frac{1}{2}\)
Lời giải chi tiết
Quảng cáo
Tham Gia Group Dành Cho Lớp 9 - Ôn Thi Vào Lớp 10 Miễn Phí |