Giải bài 6.11 trang 10 sách bài tập toán 9 - Kết nối tri thức tập 2Sử dụng công thức nghiệm hoặc công thức nghiệm thu gọn, giải các phương trình bậc hai sau: a) ({x^2} + 2x - 5 = 0); b) (4{x^2} - 4sqrt 3 x + 3 = 0); c) ({x^2} - 6sqrt 5 x + 7 = 0).
Gửi góp ý cho ufa999.cc và nhận về những phần quà hấp dẫn
Quảng cáo
Đề bài Sử dụng công thức nghiệm hoặc công thức nghiệm thu gọn, giải các phương trình bậc hai sau: a) \({x^2} + 2x - 5 = 0\); b) \(4{x^2} - 4\sqrt 3 x + 3 = 0\); c) \({x^2} - 6\sqrt 5 x + 7 = 0\).Phương pháp giải - Xem chi tiết
Xét phương trình bậc hai một ẩn \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\), với \(b = 2b'\) và \(\Delta ' = b{'^2} - ac\)
+ Nếu \(\Delta ' > 0\) thì phương trình có hai nghiệm phân biệt: \({x_1} = \frac{{ - b' + \sqrt {\Delta '} }}{a};{x_2} = \frac{{ - b - \sqrt {\Delta '} }}{a}\).
+ Nếu \(\Delta ' = 0\) thì phương trình có nghiệm kép: \({x_1} = {x_2} = \frac{{ - b'}}{a}\).
+ Nếu \(\Delta ' < 0\) thì phương trình vô nghiệm.
Lời giải chi tiết a) Ta có: \(\Delta ' = {1^2} - 1.\left( { - 5} \right) = 6 > 0,\sqrt {\Delta '} = \sqrt 6 \) nên phương trình có hai nghiệm phân biệt: \({x_1} = \frac{{ - 1 - \sqrt 6 }}{1} = - 1 - \sqrt 6 ;{x_2} = \frac{{ - 1 + \sqrt 6 }}{1} = - 1 + \sqrt 6 \). b) Ta có: \(\Delta ' = {\left( { - 2\sqrt 3 } \right)^2} - 4.3 = 0\) nên phương trình có nghiệm kép \({x_1} = {x_2} = \frac{{2\sqrt 3 }}{4} = \frac{{\sqrt 3 }}{2}\). c) Ta có: \(\Delta ' = {\left( { - 3\sqrt 5 } \right)^2} - 7.1 = 38 > 0\) nên phương trình có hai nghiệm phân biệt: \({x_1} = 3\sqrt 5 + \sqrt {38} ;{x_2} = 3\sqrt 5 - \sqrt {38} \).
Quảng cáo
Tham Gia Group Dành Cho Lớp 9 - Ôn Thi Vào Lớp 10 Miễn Phí |