Giải bài 5.33 trang 72 sách bài tập toán 9 - Kết nối tri thức tập 1Cho đường tròn (O), đường thẳng a tiếp xúc với (O) tại A, đường thẳng b tiếp xúc với (O) tại B sao cho a//b. Gọi C là một điểm tùy ý thuộc (O), khác A và B. Tiếp tuyến c của (O) tại C cắt a và b lần lượt tại M và N. a) Chứng minh AB là một đường kính của (O). b) Gọi D, P và Q lần lượt là các điểm đối xứng với C, M và N qua tâm O. Chứng minh rằng (D in left( O right),P in b) và (Q in a). c) Chứng minh rằng PQ tiếp xúc với (O) tại D. d) Chứng minh tứ giác MNPQ là một hình thoi.
Toán - Văn - Anh
Quảng cáo
Đề bài Cho đường tròn (O), đường thẳng a tiếp xúc với (O) tại A, đường thẳng b tiếp xúc với (O) tại B sao cho a//b. Gọi C là một điểm tùy ý thuộc (O), khác A và B. Tiếp tuyến c của (O) tại C cắt a và b lần lượt tại M và N. a) Chứng minh AB là một đường kính của (O). b) Gọi D, P và Q lần lượt là các điểm đối xứng với C, M và N qua tâm O. Chứng minh rằng \(D \in \left( O \right),P \in b\) và \(Q \in a\). c) Chứng minh rằng PQ tiếp xúc với (O) tại D. d) Chứng minh tứ giác MNPQ là một hình thoi.Phương pháp giải - Xem chi tiết
a) + Chứng minh \(a \bot OA\), \(b \bot OB\) mà a//b nên ba điểm O, A, B thẳng hàng.
+ Lại có: \(OA = OB\) (bán kính của (O)). Do đó, AB là một đường kính của (O).
b) + Chứng minh D thuộc (O).
+ Chứng minh tứ giác AMBP là hình bình hành, suy ra BP//AM, suy ra BP//a. Mà b//a nên đường thẳng \(BP \equiv b\). Khi đó, P thuộc b.
+ Chứng minh tương tự ta có Q thuộc a.
c) + Chứng minh \(\Delta COM = \Delta DOP\left( {c.g.c} \right)\), suy ra \(\widehat {PDO} = \widehat {MCO} = {90^o}\).
+ Chứng minh \(\Delta CON = \Delta DOQ\left( {c.g.c} \right)\), suy ra \(\widehat {QDO} = \widehat {NCO} = {90^o}\).
+ Chứng minh \(\widehat {QDP} = {180^o}\). Suy ra, ba điểm P, D, Q thẳng hàng và PQ là tiếp tuyến của (O) tại D.
d) + Chứng minh tứ giác MNPQ là hình bình hành.
+ Chứng minh \(\widehat {AOM} = \widehat {MOC} = \frac{1}{2}\widehat {AOC}\), \(\widehat {BON} = \widehat {NOC} = \frac{1}{2}\widehat {BOC}\) nên \(\widehat {MOC} + \widehat {NOC} = {90^o}\) nên MP vuông góc với NQ tại O.
+ Hình bình hành MNPQ có đường chéo MP vuông góc với NQ tại O. Do đó, MNPQ là hình thoi.
Lời giải chi tiết
Quảng cáo
Tham Gia Group Dành Cho Lớp 9 - Ôn Thi Vào Lớp 10 Miễn Phí |