Giải bài 5.30 trang 71 sách bài tập toán 9 - Kết nối tri thức tập 1Cho tam giác vuông ABC ((widehat A = {90^o})) có (widehat C = {30^o}) và AB=3cm. Đường phân giác của góc B cắt AC tại D. a) Chứng minh rằng đường tròn (D; DA) tiếp xúc với cạnh BC. b) Tính độ dài cung nằm trong góc BDC của đường tròn (D; DA) và diện tích hình quạt tròn tương ứng với cung ấy. c) Tính diện tích hình vành khuyên tạo bởi hai đường tròn (D; DA) và (D; DC).
Toán - Văn - Anh
Quảng cáo
Đề bài Cho tam giác vuông ABC (\(\widehat A = {90^o}\)) có \(\widehat C = {30^o}\) và AB=3cm. Đường phân giác của góc B cắt AC tại D. a) Chứng minh rằng đường tròn (D; DA) tiếp xúc với cạnh BC. b) Tính độ dài cung nằm trong góc BDC của đường tròn (D; DA) và diện tích hình quạt tròn tương ứng với cung ấy. c) Tính diện tích hình vành khuyên tạo bởi hai đường tròn (D; DA) và (D; DC).Phương pháp giải - Xem chi tiết
a) + Qua D kẻ đường thẳng vuông góc với BC, cắt BC tại E.
+ Sử dụng tính chất tia phân giác của góc suy ra \(AD = DE\).
+ Do đó, đường tròn (D; DA) tiếp xúc với cạnh BC tại E.
b) + \(\widehat {ABC} = {90^o} - \widehat {BCA}\) nên \(\widehat {ABD} = \widehat {DBC} = \frac{1}{2}\widehat {ABC} = {30^o}\).
+ Tam giác ABD vuông tại A nên \(AD = AB.\tan \widehat {ABD}\).
+ \(\widehat {BDC} = {180^o} - \widehat {DBC} - \widehat {DCB}\) nên tính được số đo cung nằm trong góc BDC của đường tròn (D; DA).
+ Từ đó tính được độ dài cung nằm trong góc BDC của đường tròn (D; DA) và diện tích hình quạt tròn của cung nằm trong góc BDC của đường tròn (D; DA)
c) + Tam giác ABC vuông tại A nên \(AC = AB.\cot \widehat {ACB}\), từ đó tính được DC.
Diện tích hình vành khuyên tạo bởi hai đường tròn (D; DA) và (D; DC) là: \({S_{vk}} = \pi \left( {D{C^2} - D{A^2}} \right)\).
Lời giải chi tiết
Quảng cáo
Tham Gia Group Dành Cho Lớp 9 - Ôn Thi Vào Lớp 10 Miễn Phí |