Giải bài 5 trang 104, 105 vở thực hành Toán 9 tập 2Cho tam giác đều ABC nội tiếp đường tròn (O) như hình bên. Phép quay ngược chiều ({60^o}) tâm O biến các điểm A, B, C lần lượt thành các điểm D, E, F. Chứng minh rằng ADBECF là một lục giác đều.
Toán - Văn - Anh
Quảng cáo
Đề bài Cho tam giác đều ABC nội tiếp đường tròn (O) như hình bên. Phép quay ngược chiều \({60^o}\) tâm O biến các điểm A, B, C lần lượt thành các điểm D, E, F. Chứng minh rằng ADBECF là một lục giác đều.Phương pháp giải - Xem chi tiết
+ Theo hình vẽ ta thấy \(ADBECF\) là lục giác lồi và nội tiếp đường tròn \(\left( {O,R} \right).\)
+ Chứng minh tam giác \(AOD,DOB\) là các tam giác đều. Suy ra \(AD = DB = OD = R.\)
+ Chứng minh tương tự có \(AD = DB = BE = EC = CF = FA = R.\)
+ Chứng minh $\text{sđ}\overset\frown{AOD}=\text{sđ}\overset\frown{DOB}=\text{sđ}\overset\frown{BOE}=\text{sđ}\overset\frown{EOC}=\text{sđ}\overset\frown{COF}=\text{sđ}\overset\frown{FOA}={{60}^{\text{o}}}.$ Từ đó tính được các góc của lục giác đều \(ADBECF\).
+ Lục giác có tất cả các góc bằng nhau, tất cả các cạnh bằng nhau nên là lục giác đều.
Lời giải chi tiết
Quảng cáo
Tham Gia Group Dành Cho Lớp 9 - Ôn Thi Vào Lớp 10 Miễn Phí |