Giải bài 4.7 trang 45 sách bài tập toán 9 - Kết nối tri thức tập 1Xét tam giác ABC vuông tại B, có (widehat A = {30^o}). Tia Bt sao cho (widehat {CBt} = {30^o}) cắt tia AC ở D, D nằm giữa A và C. Chứng minh rằng khoảng cách từ D đến đường thẳng BC bằng (frac{{AB}}{4}).
Toán - Văn - Anh
Quảng cáo
Đề bài Xét tam giác ABC vuông tại B, có \(\widehat A = {30^o}\). Tia Bt sao cho \(\widehat {CBt} = {30^o}\) cắt tia AC ở D, D nằm giữa A và C. Chứng minh rằng khoảng cách từ D đến đường thẳng BC bằng \(\frac{{AB}}{4}\).Phương pháp giải - Xem chi tiết
+ Tam giác ABC vuông tại B, \(\widehat A = {30^o}\) nên tính được góc C.
+ Tính góc BDC từ đó suy ra tam giác BDC vuông tại D, suy ra \(\frac{{BD}}{{AB}} = \sin \widehat {BAD}\).
+ Gọi E là chân đường vuông góc kẻ từ D lên BC thì DE là khoảng cách từ D đến đường thẳng BC.
+ Tam giác BDE vuông tại E nên \(\frac{{DE}}{{BD}} = \sin \widehat {DBE}\).
+ Ta có: \(\frac{{DE}}{{AB}} = \frac{{DE}}{{BD}}.\frac{{BD}}{{AB}}\), từ đó tính được \(DE = \frac{{AB}}{4}\).
Lời giải chi tiết
Quảng cáo
Tham Gia Group Dành Cho Lớp 9 - Ôn Thi Vào Lớp 10 Miễn Phí |