Giải bài 4 trang 17 sách bài tập toán 12 - Chân trời sáng tạoTìm giá trị lớn nhất, giá trị nhỏ nhất của các hàm số sau: a) (y = frac{{4{{rm{x}}^2} - 2{rm{x}} + 9}}{{2{rm{x}} - 1}}) trên khoảng (left( {1; + infty } right)); b) (y = frac{{{x^2} - 2}}{{2{rm{x}} + 1}}) trên nửa khoảng (left[ {0; + infty } right)); c) (y = frac{{9{{rm{x}}^2} + 3{rm{x}} + 7}}{{3{rm{x}} - 1}}) trên nửa khoảng (left( {frac{1}{3};5} right]); d) (y = frac{{2{{rm{x}}^2} + 3{rm{x}} - 3}}{{2{rm{x}} + 5}}) trên đoạn (left[ { - 2;4} right]♔Tổng hợp đề thi học kì 2 lớp 12 tất cả các môn - Chân trời sáng tạo Toán - Văn - Anh - Hoá - Sinh - Sử - ĐịaQuảng cáo
Đề bài Tìm giá trị lớn nhất, giá trị nhỏ nhất của các hàm số sau: a) \(y = \frac{{4{{\rm{x}}^2} - 2{\rm{x}} + 9}}{{2{\rm{x}} - 1}}\) trên khoảng \(\left( {1; + \infty } \right)\); b) \(y = \frac{{{x^2} - 2}}{{2{\rm{x}} + 1}}\) trên nửa khoảng \(\left[ {0; + \infty } \right)\); c) \(y = \frac{{9{{\rm{x}}^2} + 3{\rm{x}} + 7}}{{3{\rm{x}} - 1}}\) trên nửa khoảng \(\left( {\frac{1}{3};5} \right]\); d) \(y = \frac{{2{{\rm{x}}^2} + 3{\rm{x}} - 3}}{{2{\rm{x}} + 5}}\) trên đoạn \(\left[ { - 2;4} \right]\).Phương pháp giải - Xem chi tiết
• Cách tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(f\left( x \right)\) trên đoạn \(\left[ {a;b} \right]\):
Bước 1.🌄 Tìm các điểm \({x_1},{x_2},...,{x_n}\) thuộc khoảng \(\left( {a;b} \right)\) mà tại đó \(f'\left( x \right)\) bằng 0 hoặc không tồn tại. Bước 2.𒀰 Tính \(f\left( a \right);f\left( {{x_1}} \right);f\left( {{x_2}} \right);...;f\left( {{x_n}} \right);f\left( b \right)\). Bước 3.𝐆 Gọi \(M\) là số lớn nhất và \(m\) là số nhỏ nhất trong các giá trị tìm được ở Bước 2. Khi đó: \(M = \mathop {\max }\limits_{\left[ {a;b} \right]} f\left( x \right),m = \mathop {\min }\limits_{\left[ {a;b} \right]} f\left( x \right)\). • Cách tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên một khoảng hay nửa khoảng bằng đạo hàm: ‒ Lập bảng biến thiên của hàm số trên tập hợp đó. ‒ Căn cứ vào bảng biến thiên, kết luận giá trị lớn nhất và giá trị nhỏ nhất (nếu có) của hàm số.Lời giải chi tiết a) Xét hàm số \(y = f\left( x \right) = \frac{{4{{\rm{x}}^2} - 2{\rm{x}} + 9}}{{2{\rm{x}} - 1}}\) trên khoảng \(\left( {1; + \infty } \right)\). Ta có: \(\begin{array}{l}f'\left( x \right) = \frac{{{{\left( {4{{\rm{x}}^2} - 2{\rm{x}} + 9} \right)}^\prime }\left( {2{\rm{x}} - 1} \right) - \left( {4{{\rm{x}}^2} - 2{\rm{x}} + 9} \right){{\left( {2{\rm{x}} - 1} \right)}^\prime }}}{{{{\left( {2{\rm{x}} - 1} \right)}^2}}}\\ = \frac{{\left( {8{\rm{x}} - 2} \right)\left( {2{\rm{x}} - 1} \right) - \left( {4{{\rm{x}}^2} - 2{\rm{x}} + 9} \right).2}}{{{{\left( {2{\rm{x}} - 1} \right)}^2}}} = \frac{{8{{\rm{x}}^2} - 8{\rm{x}} - 16}}{{{{\left( {2{\rm{x}} - 1} \right)}^2}}}\end{array}\) \(f'\left( x \right) = 0 \Leftrightarrow x = 2\) hoặc \(x = - 1\) (loại). Bảng biến thiên của hàm số trên khoảng \(\left( {1; + \infty } \right)\):
Quảng cáo
Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí |