ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số

Dạng 6. Dãy phân số viết theo quy luật Chủ đề 6 Ôn hè Toán 6

Tải về
Phát hiện quy luật của dãy số

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho ufa999.cc và nhận về những phần quà hấp dẫn
Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Lý thuyết

Phát hiện quy luật của dãy số Dạng tổng quát: \(\dfrac{k}{{\left( {n - k} \right).n}} = \dfrac{{n - \left( {n - k} \right)}}{{\left( {n - k} \right).n}} = \dfrac{n}{{\left( {n - k} \right).n}} - \dfrac{{n - k}}{{\left( {n - k} \right).n}} = \dfrac{1}{{n - k}} - \dfrac{1}{n}\)

Áp dụng phương pháp khử liên tiếp: Viết mỗi số hạng thành hiệu của hai số sao cho số trừ ở nhóm trước bằng số bị trừ ở nhóm sau.

Bài tập

Bài 1:

Tính: a) A = \(2017:\left( {\dfrac{1}{{1.2}} + \dfrac{1}{{2.3}} + \dfrac{1}{{3.4}} + ... + \dfrac{1}{{2017.2018}}} \right)\) b) \(B = \dfrac{3}{{2.5}} + \dfrac{3}{{5.8}} + \dfrac{3}{{8.11}} +  \ldots  + \dfrac{3}{{2016.2019}}\) c) \(C = \dfrac{2}{{1.7}} + \dfrac{2}{{7.13}} + \dfrac{2}{{13.19}} +  \ldots  + \dfrac{2}{{2013.2019}}\)                                  d) \(D = \dfrac{7}{{1.9}} + \dfrac{7}{{9.17}} + \dfrac{7}{{17.25}} +  \ldots  + \dfrac{7}{{2011.2019}}\)

e) \(E = \dfrac{{{3^2}}}{{1.4}} + \dfrac{{{3^2}}}{{4.7}} + \dfrac{{{3^2}}}{{7.10}} +  \ldots  + \dfrac{{{3^2}}}{{2017.2020}}\)                           

f) \(F = \dfrac{1}{{1.2.3}} + \dfrac{1}{{2.3.4}} + \dfrac{1}{{3.4.5}} +  \ldots  + \dfrac{1}{{18.19.20}}\)

Bài 2:

Tính các tổng sau:

a) \(A = \dfrac{1}{2} + \dfrac{1}{{{2^2}}} + \dfrac{1}{{{2^3}}} + \dfrac{1}{{{2^4}}} +  \ldots  + \dfrac{1}{{{2^{2020}}}}\)                                                                                      

b) \(B = 1 + \dfrac{1}{2} + \dfrac{1}{4} + \dfrac{1}{8} + \dfrac{1}{{16}} + \dfrac{1}{{32}} +  \ldots  + \dfrac{1}{{2048}}\)

Bài 3:

a) Tính tổng sau: \(A = \dfrac{{1 + \left( {1 + 2} \right) + \left( {1 + 2 + 3} \right) +  \ldots  + \left( {1 + 2 + 3 +  \ldots  + 2020} \right)}}{{1.2020 + 2.2019 + 3.2018 +  \ldots  + 2020.1}}\) b) Chứng minh rằng biểu thức \(B\) có giá trị bằng \(\dfrac{1}{2}\) với \(B = \dfrac{{1.2020 + 2.2019 + 3.2018 +  \ldots  + 2020.1}}{{1.2 + 2.3 + 3.4 +  \ldots  + 2020.2021}}.\)  

Hướng dẫn giải chi tiết

Bài 1:

Tính: a) A = \(2017:\left( {\dfrac{1}{{1.2}} + \dfrac{1}{{2.3}} + \dfrac{1}{{3.4}} + ... + \dfrac{1}{{2017.2018}}} \right)\) b) b) \(B = \dfrac{3}{{2.5}} + \dfrac{3}{{5.8}} + \dfrac{3}{{8.11}} +  \ldots  + \dfrac{3}{{2016.2019}}\) c) \(C = \dfrac{2}{{1.7}} + \dfrac{2}{{7.13}} + \dfrac{2}{{13.19}} +  \ldots  + \dfrac{2}{{2013.2019}}\)                                  d) \(D = \dfrac{7}{{1.9}} + \dfrac{7}{{9.17}} + \dfrac{7}{{17.25}} +  \ldots  + \dfrac{7}{{2011.2019}}\)

e) \(E = \dfrac{{{3^2}}}{{1.4}} + \dfrac{{{3^2}}}{{4.7}} + \dfrac{{{3^2}}}{{7.10}} +  \ldots  + \dfrac{{{3^2}}}{{2017.2020}}\)                           

f) \(F = \dfrac{1}{{1.2.3}} + \dfrac{1}{{2.3.4}} + \dfrac{1}{{3.4.5}} +  \ldots  + \dfrac{1}{{18.19.20}}\)

Phương pháp

Nhận xét: Tử số bằng hiệu của các thừa số ở mẫu. Dạng tổng quát: \(\dfrac{k}{{\left( {n - k} \right).n}} = \dfrac{{n - \left( {n - k} \right)}}{{\left( {n - k} \right).n}} = \dfrac{n}{{\left( {n - k} \right).n}} - \dfrac{{n - k}}{{\left( {n - k} \right).n}} = \dfrac{1}{{n - k}} - \dfrac{1}{n}\)

Áp dụng phương pháp khử liên tiếp: Viết mỗi số hạng thành hiệu của hai số sao cho số trừ ở nhóm trước bằng số bị trừ ở nhóm sau.

Lời giải

\(2017:\left( {\dfrac{1}{{1.2}} + \dfrac{1}{{2.3}} + \dfrac{1}{{3.4}} + ... + \dfrac{1}{{2017.2018}}} \right)\) \(\begin{array}{*{20}{l}}{ = 2017:\left( {1 - \dfrac{1}{2} + \dfrac{1}{2} - \dfrac{1}{3} + ... + \dfrac{1}{{2017}} - \dfrac{1}{{2018}}} \right)}\\{ = 2017:\left( {1 - \dfrac{1}{{2018}}} \right)}\\{ = 2017:\dfrac{{2017}}{{2018}}}\\{ = 2017.\dfrac{{2018}}{{2017}} = 2018.}\end{array}\) Vậy \(x = \dfrac{{ - 2}}{3}\) b) \(B = \dfrac{3}{{2.5}} + \dfrac{3}{{5.8}} + \dfrac{3}{{8.11}} +  \ldots  + \dfrac{3}{{2016.2019}}\)         \(\begin{array}{l} = \dfrac{{5 - 2}}{{2.5}} + \dfrac{{8 - 5}}{{5.8}} + \dfrac{{11 - 8}}{{8.11}} +  \ldots  + \dfrac{{2019 - 2016}}{{2016.2019}}\\\, = \dfrac{5}{{2.5}} - \dfrac{2}{{2.5}} + \dfrac{8}{{5.8}} - \dfrac{5}{{5.8}} + \dfrac{{11}}{{8.11}} - \dfrac{8}{{8.11}} +  \ldots  + \dfrac{{2019}}{{2016.2019}} - \dfrac{{2016}}{{2016.2019}}\\\, = \dfrac{1}{2} - \dfrac{1}{5} + \dfrac{1}{5} - \dfrac{1}{8} + \dfrac{1}{8} - \dfrac{1}{{11}} +  \ldots  + \dfrac{1}{{2016}} - \dfrac{1}{{2019}}\\\, = \dfrac{1}{2} - \dfrac{1}{{2019}}\\\, = \dfrac{{2019 - 2}}{{2.2019}}\\\, = \dfrac{{2017}}{{4038}}.\end{array}\) c) \(C = \dfrac{2}{{1.7}} + \dfrac{2}{{7.13}} + \dfrac{2}{{13.19}} +  \ldots  + \dfrac{2}{{2013.2019}}\) Xét từng phân số ta thấy: Hiệu 2 thừa số ở mẫu bằng \(6\) \( \Rightarrow \) Nhân cả 2 vế của biểu thức với \(3\). \(\begin{array}{l} \Rightarrow 3C = 3 \cdot \left( {\dfrac{2}{{1.7}} + \dfrac{2}{{7.13}} + \dfrac{2}{{13.19}} +  \ldots  + \dfrac{2}{{2013.2019}}} \right)\\\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \dfrac{6}{{1.7}} + \dfrac{6}{{7.13}} + \dfrac{6}{{13.19}} +  \ldots  + \dfrac{6}{{2013.2019}}\end{array}\) \(\begin{array}{l}\,\,\,\,\,\,\,\,\,\,\,\,\, = \left( {\dfrac{1}{1} - \dfrac{1}{7}} \right) + \left( {\dfrac{1}{7} - \dfrac{1}{{13}}} \right) + \left( {\dfrac{1}{{13}} - \dfrac{1}{{19}}} \right) +  \ldots  + \left( {\dfrac{1}{{2013}} - \dfrac{1}{{2019}}} \right)\\\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \dfrac{1}{1} - \dfrac{1}{7} + \dfrac{1}{7} - \dfrac{1}{{13}} + \dfrac{1}{{13}} - \dfrac{1}{{19}} +  \ldots  + \dfrac{1}{{2013}} - \dfrac{1}{{2019}}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 1 - \dfrac{1}{{2019}} = \dfrac{{2018}}{{2019}}\end{array}\) \( \Rightarrow 3C = \dfrac{{2018}}{{2019}} \Rightarrow C = \dfrac{{2018}}{{2019}}:3 = \dfrac{{2018}}{{2019}} \cdot \dfrac{1}{3} = \dfrac{{2018}}{{6057}}\) d) \(D = \dfrac{7}{{1.9}} + \dfrac{7}{{9.17}} + \dfrac{7}{{17.25}} +  \ldots  + \dfrac{7}{{2011.2019}}\) \(\begin{array}{l} \Rightarrow D = 7 \cdot \dfrac{8}{8} \cdot \left( {\dfrac{1}{{1.9}} + \dfrac{1}{{9.17}} + \dfrac{1}{{17.25}} +  \ldots  + \dfrac{1}{{2011.2019}}} \right)\\\,\,\,\,\,\,\,\,\,\,\,\, = \dfrac{7}{8} \cdot \left( {\dfrac{8}{{1.9}} + \dfrac{8}{{9.17}} + \dfrac{8}{{17.25}} +  \ldots  + \dfrac{8}{{2011.2019}}} \right)\\\,\,\,\,\,\,\,\,\,\,\,\, = \dfrac{7}{8} \cdot \left( {1 - \dfrac{1}{9} + \dfrac{1}{9} - \dfrac{1}{{17}} + \dfrac{1}{{17}} - \dfrac{1}{{25}} +  \ldots  + \dfrac{1}{{2011}} - \dfrac{1}{{2019}}} \right)\\\,\,\,\,\,\,\,\,\,\,\,\, = \dfrac{7}{8} \cdot \left( {1 - \dfrac{1}{{2019}}} \right) = \dfrac{7}{8} \cdot \left( {\dfrac{{2019}}{{2019}} - \dfrac{1}{{2019}}} \right)\\\,\,\,\,\,\,\,\,\,\,\, = \dfrac{7}{8} \cdot \dfrac{{2018}}{{2019}} = \dfrac{{7.1009}}{{4.2019}} = \dfrac{{7063}}{{8076}}\end{array}\) Vậy \(D = \dfrac{{7063}}{{8076}}.\) e) \(E = \dfrac{{{3^2}}}{{1.4}} + \dfrac{{{3^2}}}{{4.7}} + \dfrac{{{3^2}}}{{7.10}} +  \ldots  + \dfrac{{{3^2}}}{{2017.2020}}\)        \(\begin{array}{l} = \dfrac{{3.3}}{{1.4}} + \dfrac{{3.3}}{{4.7}} + \dfrac{{3.3}}{{7.10}} +  \ldots  + \dfrac{{3.3}}{{2017.2020}}\\ = 3 \cdot \left( {\dfrac{3}{{1.4}} + \dfrac{3}{{4.7}} + \dfrac{3}{{7.10}} +  \ldots  + \dfrac{3}{{2017.2020}}} \right)\\ = 3 \cdot \left( {\dfrac{1}{1} - \dfrac{1}{4} + \dfrac{1}{4} - \dfrac{1}{7} + \dfrac{1}{7} - \dfrac{1}{{10}} +  \ldots  + \dfrac{1}{{2017}} - \dfrac{1}{{2020}}} \right)\\ = 3 \cdot \left( {1 - \dfrac{1}{{2020}}} \right) = 3 \cdot \left( {\dfrac{{2020}}{{2020}} - \dfrac{1}{{2020}}} \right)\\ = 3 \cdot \dfrac{{2019}}{{2020}} = \dfrac{{6057}}{{2020}}\end{array}\) Vậy \(E = \dfrac{{6057}}{{2020}} \cdot \) f) \(F = \dfrac{1}{{1.2.3}} + \dfrac{1}{{2.3.4}} + \dfrac{1}{{3.4.5}} +  \ldots  + \dfrac{1}{{18.19.20}}\) Ta xét: \(\dfrac{2}{{1.2.3}} = \dfrac{{3 - 1}}{{1.2.3}} = \dfrac{3}{{1.2.3}} - \dfrac{1}{{1.2.3}} = \dfrac{1}{{1.2}} - \dfrac{1}{{2.3}}\) \(\dfrac{2}{{2.3.4}} = \dfrac{{4 - 2}}{{2.3.4}} = \dfrac{4}{{2.3.4}} - \dfrac{2}{{2.3.4}} = \dfrac{1}{{2.3}} - \dfrac{1}{{3.4}}\) \(........\) \(\dfrac{2}{{18.19.20}} = \dfrac{{20 - 18}}{{18.19.20}}\)\( = \dfrac{{20}}{{18.19.20}} - \dfrac{{18}}{{18.19.20}}\)\( = \dfrac{1}{{18.19}} - \dfrac{1}{{19.20}}\) Tổng quát: \(\dfrac{1}{{n.\left( {n + 1} \right)}} - \dfrac{1}{{\left( {n + 1} \right)\left( {n + 2} \right)}} = \dfrac{2}{{n\left( {n + 1} \right)\left( {n + 2} \right)}}\) \( \Rightarrow F = \dfrac{1}{{1.2.3}} + \dfrac{1}{{2.3.4}} + \dfrac{1}{{3.4.5}} +  \ldots  + \dfrac{1}{{18.19.20}}\) \( \Rightarrow 2F = \dfrac{2}{{1.2.3}} + \dfrac{2}{{2.3.4}} + \dfrac{2}{{3.4.5}} +  \ldots  + \dfrac{2}{{18.19.20}}\)      \(\,\,\,\,\,\,\,\, = \dfrac{1}{{1.2}} - \dfrac{1}{{2.3}} + \dfrac{1}{{2.3}} - \dfrac{1}{{3.4}} + \dfrac{1}{{3.4}} - \dfrac{1}{{4.5}} +  \ldots  + \dfrac{1}{{18.19}} - \dfrac{1}{{19.20}}\)      \(\,\,\,\,\,\,\,\, = \dfrac{1}{{1.2}} - \dfrac{1}{{19.20}} = \dfrac{{19.10 - 1}}{{19.20}} = \dfrac{{190 - 1}}{{380}} = \dfrac{{189}}{{380}}\) \( \Rightarrow F = \dfrac{{189}}{{380}}:2 = \dfrac{{189}}{{380}} \cdot \dfrac{1}{2} = \dfrac{{189}}{{760}}\) Vậy \(F = \dfrac{{189}}{{760}} \cdot \)

Bài 2:

Tính các tổng sau:

a) \(A = \dfrac{1}{2} + \dfrac{1}{{{2^2}}} + \dfrac{1}{{{2^3}}} + \dfrac{1}{{{2^4}}} +  \ldots  + \dfrac{1}{{{2^{2020}}}}\)                                                                                      

b) \(B = 1 + \dfrac{1}{2} + \dfrac{1}{4} + \dfrac{1}{8} + \dfrac{1}{{16}} + \dfrac{1}{{32}} +  \ldots  + \dfrac{1}{{2048}}\)

Phương pháp

Xét các phân số có tử bằng nhau và có mẫu là lũy thừa tăng dần của cùng 1 cơ số thì ta nhân cả 2 vế với đúng cơ số đó. Trường hợp tổng quát: \(A = \dfrac{1}{{{a^1}}} + \dfrac{1}{{{a^2}}} + \dfrac{1}{{{a^3}}} +  \ldots  + \dfrac{1}{{{a^n}}}\)\( \Rightarrow A.a = a\left( {\dfrac{1}{{{a^1}}} + \dfrac{1}{{{a^2}}} + \dfrac{1}{{{a^3}}} +  \ldots  + \dfrac{1}{{{a^n}}}} \right)\)\( = 1 + \dfrac{1}{a} +  \ldots  + \dfrac{1}{{{a^{n - 1}}}}\)  

Lời giải

a) \(A = \dfrac{1}{2} + \dfrac{1}{{{2^2}}} + \dfrac{1}{{{2^3}}} + \dfrac{1}{{{2^4}}} +  \ldots  + \dfrac{1}{{{2^{2020}}}}\) \( \Rightarrow 2A = 2 \cdot \left( {\dfrac{1}{2} + \dfrac{1}{{{2^2}}} + \dfrac{1}{{{2^3}}} + \dfrac{1}{{{2^4}}} +  \ldots  + \dfrac{1}{{{2^{2020}}}}} \right)\) \( \Rightarrow 2A = 2 \cdot \dfrac{1}{2} + 2 \cdot \dfrac{1}{{{2^2}}} + 2 \cdot \dfrac{1}{{{2^3}}} + 2 \cdot \dfrac{1}{{{2^4}}} +  \ldots  + 2 \cdot \dfrac{1}{{{2^{2020}}}}\) \( \Rightarrow 2A = 1 + \dfrac{1}{2} + \dfrac{1}{{{2^2}}} + \dfrac{1}{{{2^3}}} +  \ldots  + \dfrac{1}{{{2^{2019}}}}\) \(\,\,\,\,\,\,\,\,\,A = \dfrac{1}{2} + \dfrac{1}{{{2^2}}} + \dfrac{1}{{{2^3}}} + \dfrac{1}{{{2^4}}} +  \ldots  + \dfrac{1}{{{2^{2020}}}}\) \( \Rightarrow 2A - A = \left( {1 + \dfrac{1}{2} + \dfrac{1}{{{2^2}}} + \dfrac{1}{{{2^3}}} +  \ldots  + \dfrac{1}{{{2^{2019}}}}} \right) - \left( {\dfrac{1}{2} + \dfrac{1}{{{2^2}}} + \dfrac{1}{{{2^3}}} + \dfrac{1}{{{2^4}}} +  \ldots  + \dfrac{1}{{{2^{2020}}}}} \right)\) \( \Rightarrow A = 1 + \dfrac{1}{2} + \dfrac{1}{{{2^2}}} + \dfrac{1}{{{2^3}}} +  \ldots  + \dfrac{1}{{{2^{2019}}}} - \dfrac{1}{2} - \dfrac{1}{{{2^2}}} - \dfrac{1}{{{2^3}}} - \dfrac{1}{{{2^4}}} -  \ldots  - \dfrac{1}{{{2^{2020}}}}\) \( \Rightarrow A = 1 - \dfrac{1}{{{2^{2020}}}} = \dfrac{{{2^{2020}} - 1}}{{{2^{2020}}}}\) Vậy \(A = \dfrac{{{2^{2020}} - 1}}{{{2^{2020}}}}\). b) \(B = 1 + \dfrac{1}{2} + \dfrac{1}{4} + \dfrac{1}{8} + \dfrac{1}{{16}} +  \ldots  + \dfrac{1}{{2048}}\) \( = 1 + \dfrac{1}{2} + \dfrac{1}{{{2^2}}} + \dfrac{1}{{{2^3}}} + \dfrac{1}{{{2^4}}} +  \ldots  + \dfrac{1}{{{2^{11}}}}\) \( \Rightarrow 2B = 2 \cdot \left( {1 + \dfrac{1}{2} + \dfrac{1}{{{2^2}}} + \dfrac{1}{{{2^3}}} + \dfrac{1}{{{2^4}}} +  \ldots  + \dfrac{1}{{{2^{11}}}}} \right)\) \( \Rightarrow 2B = 2.1 + 2 \cdot \dfrac{1}{2} + 2 \cdot \dfrac{1}{{{2^2}}} + 2 \cdot \dfrac{1}{{{2^3}}} + 2 \cdot \dfrac{1}{{{2^4}}} +  \ldots  + 2 \cdot \dfrac{1}{{{2^{11}}}}\) \( \Rightarrow 2B = 2 + 1 + \dfrac{1}{2} + \dfrac{1}{{{2^2}}} + \dfrac{1}{{{2^3}}} +  \ldots  + \dfrac{1}{{{2^{10}}}}\) \( \Rightarrow 2B = 3 + \dfrac{1}{2} + \dfrac{1}{{{2^2}}} + \dfrac{1}{{{2^3}}} +  \ldots  + \dfrac{1}{{{2^{10}}}}\) \(\,\,\,\,\,\,\,\,\,B = 1 + \dfrac{1}{2} + \dfrac{1}{{{2^2}}} + \dfrac{1}{{{2^3}}} + \dfrac{1}{{{2^4}}} +  \ldots  + \dfrac{1}{{{2^{11}}}}\) \( \Rightarrow 2B - B = 2 - \dfrac{1}{{{2^{11}}}}\)\( \Rightarrow B = \dfrac{{{2^{12}} - 1}}{{{2^{11}}}}\); Vậy \(B = \dfrac{{{2^{12}} - 1}}{{{2^{11}}}} \cdot \)

Bài 3:

a) Tính tổng sau: \(A = \dfrac{{1 + \left( {1 + 2} \right) + \left( {1 + 2 + 3} \right) +  \ldots  + \left( {1 + 2 + 3 +  \ldots  + 2020} \right)}}{{1.2020 + 2.2019 + 3.2018 +  \ldots  + 2020.1}}\) b) Chứng minh rằng biểu thức \(B\) có giá trị bằng \(\dfrac{1}{2}\) với \(B = \dfrac{{1.2020 + 2.2019 + 3.2018 +  \ldots  + 2020.1}}{{1.2 + 2.3 + 3.4 +  \ldots  + 2020.2021}}.\)

Phương pháp

+) Áp dụng quy tắc dấu ngoặc, nhóm các hạng tử. +) Áp dụng công thức tính tổng của 1 dãy các số tự nhiên liên tiếp: \(1 + 2 +  \ldots  + n = \dfrac{{n + 1}}{2} \cdot n = \dfrac{{n.\left( {n + 1} \right)}}{2}\)

Lời giải

a) \(A = \dfrac{{1 + \left( {1 + 2} \right) + \left( {1 + 2 + 3} \right) +  \ldots  + \left( {1 + 2 + 3 +  \ldots  + 2020} \right)}}{{1.2020 + 2.2019 + 3.2018 +  \ldots  + 2020.1}}\) Ta có:

\(\begin{array}{l}A = \dfrac{{1 + \left( {1 + 2} \right) + \left( {1 + 2 + 3} \right) +  \ldots  + \left( {1 + 2 + 3 +  \ldots  + 2020} \right)}}{{1.2020 + 2.2019 + 3.2018 +  \ldots  + 2020.1}}\\\,\,\,\,\, = \dfrac{{1 + 1 + 2 + 1 + 2 + 3 +  \ldots  + 1 + 2 + 3 +  \ldots 2020}}{{1.2020 + 2.2019 + 3.2018 +  \ldots  + 2020.1}}\\\,\,\,\,\, = \dfrac{{\left( {1 + 1 + 1 +  \ldots  + 1} \right) + \left( {2 + 2 +  \ldots 2} \right) + \left( {3 + 3 + 3 + 3 \ldots } \right) +  \ldots  + 2020}}{{1.2020 + 2.2019 + 3.2018 +  \ldots  + 2020.1}}\end{array}\)

\(\begin{array}{l}\,\,\,\,\, = \dfrac{{1.2020 + 2.2019 + 3.2018 +  \ldots  + 2020.1}}{{1.2020 + 2.2019 + 3.2018 +  \ldots  + 2020.1}}\\\,\,\,\,\, = 1\end{array}\)

b) Chứng minh rằng biểu thức \(B\) có giá trị bằng \(\dfrac{1}{2}\) với \(B = \dfrac{{1.2020 + 2.2019 + 3.2018 +  \ldots  + 2020.1}}{{1.2 + 2.3 + 3.4 +  \ldots  + 2020.2021}}.\) Với biểu thức \(B\), xét tử số ta có: \(\,\,\,\,1.2020 + 2.2019 + 3.2018 +  \ldots  + 2020.1\) \( = 1 + \left( {1 + 2} \right) + \left( {1 + 2 + 3} \right) +  \ldots  + \left( {1 + 2 + 3 +  \ldots  + 2020} \right)\) \( = \dfrac{{0 + 1}}{2} \cdot 2 + \dfrac{{1 + 2}}{2} \cdot 2 + \dfrac{{1 + 3}}{2} \cdot 3 +  \ldots  + \dfrac{{1 + 2020}}{2} \cdot 2020\) \( = \dfrac{1}{2} \cdot 2 + \dfrac{3}{2} \cdot 2 + \dfrac{4}{2} \cdot 3 +  \ldots  + \dfrac{{2021}}{2} \cdot 2020\) \( = \dfrac{{1.2}}{2} + \dfrac{{2.3}}{2} + \dfrac{{3.4}}{2} +  \ldots  + \dfrac{{2020.2021}}{2}\) \( = \dfrac{1}{2} \cdot \left( {1.2 + 2.3 + 3.4 +  \ldots  + 2020.2021} \right)\) \(\begin{array}{l} \Rightarrow B = \dfrac{{1.2020 + 2.2019 + 3.2018 +  \ldots  + 2020.1}}{{1.2 + 2.3 + 3.4 +  \ldots  + 2020.2021}}\\\,\,\,\,\,\,\,\,\,\,\,\,\, = \dfrac{{\dfrac{1}{2} \cdot \left( {1.2 + 2.3 + 3.4 +  \ldots  + 2020.2021} \right)}}{{1.2 + 2.3 + 3.4 +  \ldots  + 2020.2021}} = \dfrac{1}{2}.\end{array}\) Vậy \(B = \dfrac{1}{2} \cdot \)
Tải về

Quảng cáo

Tham Gia Group Dành Cho Lớp 6 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close
{muse là gì}|🀅{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số press}|꧃{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số city}|♛{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số city}|{copa america tổ chức mấy năm 1 lần}|🐭{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số đăng nhập}|{binh xập xám}|꧃{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số fan}|{xì dách online}|💃{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số best}|