Giải bài tập 2.10 trang 65 SGK Toán 12 tập 1 - Cùng khám pháCho tứ diện ABCD có \(AB = 2a,CD = 2a\sqrt 3 \). Gọi M, N lần lượt là trung điểm của BC và AD. Biết rằng \(MN = a\sqrt 7 \), hãy tính góc giữa hai vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {CD} \).
Gửi góp ý cho ufa999.cc và nhận về những phần quà hấp dẫn
Quảng cáo
Đề bài Cho tứ diện ABCD có \(AB = 2a,CD = 2a\sqrt 3 \). Gọi M, N lần lượt là trung điểm của BC và AD. Biết rằng \(MN = a\sqrt 7 \), hãy tính góc giữa hai vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {CD} \).Phương pháp giải - Xem chi tiết
- Sử dụng công thức trung điểm để biểu diễn các vectơ \(\overrightarrow {NM} \) qua các vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {CD} \).
- Tính tích vô hướng \(\overrightarrow {MN} \cdot \overrightarrow {MN} \) để từ đó tìm ra tích vô hướng \(\overrightarrow {AB} \cdot \overrightarrow {CD} \).
- Sử dụng công thức tích vô hướng để tính góc giữa hai vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {CD} \).
Lời giải chi tiết
Quảng cáo
Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí |