Giải bài 5.2 trang 56 sách bài tập toán 9 - Kết nối tri thức tập 1Cho đường tròn (O) có bán kính bằng 2,5cm và hai tia Ox, Oy vuông góc với nhau tại O. Trên tia Ox lấy điểm A sao cho (OA = 3cm); trên tia Oy lấy điểm B sao cho (OB = 4cm). Gọi M là trung điểm của đoạn AB. Chứng minh rằng điểm M nằm trên đường tròn (O).
Toán - Văn - Anh
Quảng cáo
Đề bài Cho đường tròn (O) có bán kính bằng 2,5cm và hai tia Ox, Oy vuông góc với nhau tại O. Trên tia Ox lấy điểm A sao cho \(OA = 3cm\); trên tia Oy lấy điểm B sao cho \(OB = 4cm\). Gọi M là trung điểm của đoạn AB. Chứng minh rằng điểm M nằm trên đường tròn (O).Phương pháp giải - Xem chi tiết
+ Áp dụng định lí Pythagore vào tam giác AOB vuông tại O tính được AB.
+ Vì OM là đường trung tuyến của tam giác AOB vuông tại O nên: \(OM = \frac{1}{2}AB\), tính được OM, suy ra M nằm trên đường tròn (O).
Lời giải chi tiết
Quảng cáo
Tham Gia Group Dành Cho Lớp 9 - Ôn Thi Vào Lớp 10 Miễn Phí |