Giải bài 35 trang 117 sách bài tập toán 9 - Cánh diều tập 1Một chiếc cầu được thiết kế như một cung AB của đường tròn (O) với độ dài AB = 40m và chiều cao MK = 6m (Hình 35). Tính bán kính của đường tròn chứa cung AMB (làm tròn kết quả đến hàng phần mười của mét).
Toán - Văn - Anh
Quảng cáo
Đề bài Cho tam giác ABC vuông tại A có đường cao AH. Vẽ đường tròn tâm O đường kính AC. Trên tia BH, lấy điểm D sao cho H là trung điểm của đoạn thẳng BD. Nối A với D cắt đường tròn (O) tại E. Chứng minh: a) CH là tia phân giác của góc ACE;b) OH // EC. Phương pháp giải - Xem chi tiết
a) Bước 1: Chứng minh \(\widehat {{A_1}} = \widehat {{C_1}}\) (vì cùng bằng \(\widehat {{A_2}}\))
Bước 2: Chứng minh \(\widehat {{A_1}} = \widehat {{C_2}}\) (cùng phụ với góc B).
b) Chứng minh 2 góc đồng vị bằng nhau \(\widehat {{O_1}} = 2\widehat {{C_2}}\)(góc ở tâm bằng số đo cung bị chắn, góc nội tiếp bằng nửa số đo cung bị chắn).
Lời giải chi tiết Mà \(\widehat {{O_1}};\widehat {ACE}\) là 2 góc đồng vị nên OH // EC.
Quảng cáo
Tham Gia Group Dành Cho Lớp 9 - Ôn Thi Vào Lớp 10 Miễn Phí |