Giải bài 2 trang 87 vở thực hành Toán 9 tập 2Cho các điểm như hình bên. Tính số đo các góc của tam giác ABC, biết rằng (widehat {AOB} = {120^o},widehat {BOC} = {80^o}).
Gửi góp ý cho ufa999.cc và nhận về những phần quà hấp dẫn
Quảng cáo
Đề bài Cho các điểm như hình bên. Tính số đo các góc của tam giác ABC, biết rằng \(\widehat {AOB} = {120^o},\widehat {BOC} = {80^o}\).Phương pháp giải - Xem chi tiết
+ Vì góc ở tâm COB và góc nội tiếp CAB cùng chắn cung nhỏ BC nên \(\widehat {BAC} = \frac{1}{2}\widehat {COB}\).
+ Vì góc ở tâm AOB và góc nội tiếp ACB cùng chắn cung nhỏ AB nên \(\widehat {ACB} = \frac{1}{2}\widehat {AOB}\).
+ Tam giác ABC có: \(\widehat {ABC} = {180^o} - \widehat {BAC} - \widehat {ACB}\).
Lời giải chi tiết Xét trong đường tròn (O), ta có: \(\widehat {BAC} = \frac{1}{2}\widehat {COB} = {40^o}\) (góc ở tâm COB và góc nội tiếp CAB cùng chắn một cung $\overset\frown{BC}$); \(\widehat {ACB} = \frac{1}{2}\widehat {AOB} = {60^o}\) (góc ở tâm AOB và góc nội tiếp ACB cùng chắn một cung $\overset\frown{AB}$). Tổng ba góc trong tam giác ABC bằng \({180^o}\) nên \(\widehat {ABC} = {180^o} - \widehat {BAC} - \widehat {ACB} = {80^o}\).
Quảng cáo
Tham Gia Group Dành Cho Lớp 9 - Ôn Thi Vào Lớp 10 Miễn Phí |