Giải bài 13 trang 17 sách bài tập toán 9 - Chân trời sáng tạo tập 1Giải các hệ phương trình: a) (left{ {begin{array}{*{20}{c}}{x + ysqrt 3 = 0}{xsqrt 3 + 2y = 2}end{array}} right.) b) (left{ {begin{array}{*{20}{c}}{sqrt 3 x + y = 3 + 3sqrt 2 }{2x - sqrt 2 y = 2sqrt 3 - 6}end{array}} right.)
Gửi góp ý cho ufa999.cc và nhận về những phần quà hấp dẫn
Quảng cáo
Đề bài Giải các hệ phương trình: a) \(\left\{ {\begin{array}{*{20}{c}}{x + y\sqrt 3 = 0}\\{x\sqrt 3 + 2y = 2}\end{array}} \right.\) b) \(\left\{ {\begin{array}{*{20}{c}}{\sqrt 3 x + y = 3 + 3\sqrt 2 }\\{2x - \sqrt 2 y = 2\sqrt 3 - 6}\end{array}} \right.\)Phương pháp giải - Xem chi tiết Dựa 🉐vào: Giải hệ phương trình bằng phương pháp thế B1: Từ 1 phương trình của hệ, ta biểu diễn ẩn này theo ẩn kia, rồi thế💦 vào phương trình còn lại của hệ để nhận được một phương trình một ẩn. B2: Giải phương 🥃trình một ẩn đó rồi suy ra nghiệm của hệ. Giải hệ phương trình bằng phương pháp cộng đại số B1: Nhân hai vế của mỗi phương trình với một số thích hợp (nếu cần) sao cho các hệ số của một ẩn nào đó trong hai phương♌ trình của hệ bằng nhau hoặc đối nhau. B2: Cộng hay trừ từng vế hai phương t꧑rình của hệ để được một phương trình một ẩn và giải phương trình đó. B3: Thế giá trị của ẩn vừa tìm được ở B2 và một trong hai phương trình của hệ đã cho để tìm giá trị của ẩn còn lạ൲i. Kết luận nghiệm của hệ. Lời giải chi tiết a) \(\left\{ {\begin{array}{*{20}{c}}{x + y\sqrt 3 = 0}\\{x\sqrt 3 + 2y = 2}\end{array}} \right.\) \(\begin{array}{l}\left\{ {\begin{array}{*{20}{c}}{x = - y\sqrt 3 }\\{\left( { - y\sqrt 3 } \right)\sqrt 3 + 2y = 2}\end{array}} \right.\\\left\{ {\begin{array}{*{20}{c}}{x = - y\sqrt 3 }\\{ - 3y + 2y = 2}\end{array}} \right.\\\left\{ {\begin{array}{*{20}{c}}{x = 2\sqrt 3 }\\{y = - 2}\end{array}} \right.\end{array}\) Vậy hệ phương trình có nghiệm duy nhất là (\(2\sqrt 3 ; - 2\)). b) \(\left\{ {\begin{array}{*{20}{c}}{\sqrt 3 x + y = 3 + 3\sqrt 2 }\\{2x - \sqrt 2 y = 2\sqrt 3 - 6}\end{array}} \right.\) \(\begin{array}{l}\left\{ {\begin{array}{*{20}{c}}{y = 3 + 3\sqrt 2 - \sqrt 3 x}\\{2x - \sqrt 2 \left( {3 + 3\sqrt 2 - \sqrt 3 x} \right) = 2\sqrt 3 - 6}\end{array}} \right.\\\left\{ {\begin{array}{*{20}{c}}{y = 3 + 3\sqrt 2 - \sqrt 3 x}\\{2x - 3\sqrt 2 - 6 + \sqrt 6 x = 2\sqrt 3 - 6}\end{array}} \right.\\\left\{ {\begin{array}{*{20}{c}}{y = 3 + 3\sqrt 2 - \sqrt 3 x}\\{\left( {2 + \sqrt 6 } \right)x = 2\sqrt 3 + 3\sqrt 2 }\end{array}} \right.\\\left\{ {\begin{array}{*{20}{c}}{y = 3\sqrt 2 }\\{x = \sqrt 3 }\end{array}} \right.\end{array}\) Vậy hệ phương trình có nghiệm duy nhất là (\(\sqrt 3 ;3\sqrt 2 \)).
Quảng cáo
Tham Gia Group Dành Cho Lớp 9 - Ôn Thi Vào Lớp 10 Miễn Phí |