ftw bet

Giải bài 1 trang 110, 111 vở thực hành Toán 9 tập 2

Cho tam giác ABC có các đường cao BE, CF cắt nhau tại H. Gọi M là trung điểm của BC và I là trung điểm của AH. Chứng minh rằng: a) Tứ giác AEHF nội tiếp đường tròn tâm I; b) ME, MF tiếp xúc với đường tròn ngoại tiếp tứ giác AEHF.

Tổng hợp Đề thi vào 10 có đáp án và lời giải

Toán - Văn - Anh
Quảng cáo

Đề bài

Cho tam giác ABC có các đường cao BE, CF cắt nhau tại H. Gọi M là trung điểm của BC và I là trung điểm của AH. Chứng minh rằng: a) Tứ giác AEHF nội tiếp đường tròn tâm I; b) ME, MF tiếp xúc với đường tròn ngoại tiếp tứ giác AEHF.

Phương pháp giải - Xem chi tiết

a) Chứng minh \(IE = IF = IH = IA\), suy ra tứ giác AEHF nội tiếp đường tròn (I, IA). b) + Chứng minh tứ giác BCEF nội tiếp đường tròn (M, MB). Nên \(\widehat {AEF} = {180^o} - \widehat {FEC} = \widehat {FBC} = \widehat {ABC}\). + Chứng minh \(\widehat {IFA} = \widehat {IAF} = \widehat {HAB} = {90^o} - \widehat {ABC}\), \(\widehat {MFC} = \widehat {FCM}\), suy ra \(\widehat {MFI} = \widehat {MFC} + \widehat {CFI}\) \(= \widehat {MFC} + \left( {{{90}^o} - \widehat {IFA}} \right) \\= \left( {{{90}^o} - \widehat {ABC}} \right) + \widehat {ABC} = {90^o}\) + Do đó, \(MF \bot IF\) nên MF tiếp xúc với (I, IA). + Chứng minh tương tự ta có: ME tiếp xúc với (I, IA).

Lời giải chi tiết

a) Do hai tam giác AEH và AFH vuông tại E và F nên \(IE = IF = IH = IA\). Vì vậy tứ giác AEHF nội tiếp đường tròn (I, IA).

b) Tương tự như trên, tứ giác BCEF có \(\widehat {BFC} = \widehat {BEC} = {90^o}\) nên tứ giác BCEF nội tiếp đường tròn (M, MB).

Suy ra \(\widehat {AEF} = {180^o} - \widehat {FEC} = \widehat {FBC} = \widehat {ABC}\). Vì \(\Delta IFA\) cân tại I nên \(\widehat {IFA} = \widehat {IAF} = \widehat {HAB} = {90^o} - \widehat {ABC}\). (1) Mặt khác, ta có \(MF = MC\), hay \(\Delta MFC\) cân tại M. Suy ra \(\widehat {MFC} = \widehat {FCM}\) (2) Vì vậy ta có: \(\widehat {MFI} = \widehat {MFC} + \widehat {CFI} \\= \widehat {MFC} + \left( {{{90}^o} - \widehat {IFA}} \right) \\= \left( {{{90}^o} - \widehat {ABC}} \right) + \widehat {ABC} \) \(= {90^o}\) (theo (1) và (2)). Do đó, \(MF \bot IF\). Suy ra MF tiếp xúc với (I, IA). Tương tự ME tiếp xúc với (I, IA).

Quảng cáo

Tham Gia Group Dành Cho Lớp 9 - Ôn Thi Vào Lớp 10 Miễn Phí

close
{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|