ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số

Giải bài 1 trang 102 vở thực hành Toán 9

Cho nửa đường tròn đường kính AB và một điểm M tùy ý thuộc nửa đường tròn đó. Chứng minh rằng khoảng cách từ M đến AB không lớn hơn (frac{{AB}}{2}).

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho ufa999.cc và nhận về những phần quà hấp dẫn
Quảng cáo

Đề bài

Cho nửa đường tròn đường kính AB và một điểm M tùy ý thuộc nửa đường tròn đó. Chứng minh rằng khoảng cách từ M đến AB không lớn hơn \(\frac{{AB}}{2}\).

Phương pháp giải - Xem chi tiết

+ Gọi H là giao điểm của đường vuông góc hạ từ M xuống AB, M’ là điểm đối xứng với M qua AB. + Chứng minh M’ thuộc đường tròn đường kính AB nên MM’ là một dây của đường tròn đường kính AB. + Do đó, \(MM' \le AB\) hay \(2MH \le AB\), suy ra \(MH \le \frac{{AB}}{2}\).

Lời giải chi tiết

(H.5.9)

Gọi H là giao điểm của đường vuông góc hạ từ M xuống AB. Khi đó, độ dài đoạn MH là khoảng cách từ M đến AB. Gọi M’ là điểm đối xứng với M qua AB. Khi đó, H là trung điểm của MM’, tức là \(MM' = 2MH\). Mặt khác do AB là đường kính của đường tròn nên M’ thuộc đường tròn đường kính AB. Suy ra MM’ là một dây của đường tròn. Do đó, \(MM' \le AB\) hay \(2MH \le AB\), suy ra \(MH \le \frac{{AB}}{2}\). Vậy khoảng cách từ M đến AB không lớn hơn \(\frac{{AB}}{2}\).

Quảng cáo

Tham Gia Group Dành Cho Lớp 9 - Ôn Thi Vào Lớp 10 Miễn Phí

close
{muse là gì}|🐓{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số press}|ꦓ{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số city}|🌃{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số city}|{copa america tổ chức mấy năm 1 lần}|🔯{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số đăng nhập}|{binh xập xám}|ജ{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số fan}|{xì dách online}|꧂{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số best}|