Giải:
a) Đặt \(\sin x + \cos x = t\), \(\left| t \right| \le \sqrt 2 \), suy ra \(\sin x\cos x = \frac{{1 - {t^2}}}{2}\). Khi đó, phương trình có dạng \(t - \left( {{t^2} - 1} \right) + 1 = 0\) \( \Leftrightarrow {t^2} - t - 2 = 0 \Leftrightarrow \left[ \begin{array}{l}t = - 1\\t = 2\end{array} \right.\) (loại t = 2) \( \Leftrightarrow \sin x + \cos x = - 1 \Leftrightarrow \sqrt 2 \sin \left( {x + \frac{\pi }{4}} \right) = - 1\) \( \Leftrightarrow \sin \left( {x + \frac{\pi }{4}} \right) = - \frac{1}{{\sqrt 2 }} \Leftrightarrow \left[ \begin{array}{l}x = - \frac{\pi }{2} + k2\pi \\x = \pi + k2\pi \end{array} \right.\) \(\left( {k \in \mathbb{Z}} \right)\). b) Điều kiện: \(\cos x \ne 0 \Leftrightarrow x \ne \frac{\pi }{2} + k\pi \) \(\left( {k \in \mathbb{Z}} \right)\). \(1 + \tan x = 2\sqrt 2 \sin x \Leftrightarrow 1 + \frac{{\sin x}}{{\cos x}} = 2\sqrt 2 \sin x\) \( \Leftrightarrow \sin x + \cos x = 2\sqrt 2 \sin x\cos x\). Đặt \(\sin x + \cos x = t\), \(\left| t \right| \le \sqrt 2 \), suy ra \(\sin x\cos x = \frac{{1 - {t^2}}}{2}\). Khi đó, phương trình có dạng \(t = \sqrt 2 \left( {{t^2} - 1} \right) \Leftrightarrow \sqrt 2 {t^2} - t - \sqrt 2 = 0\) \( \Leftrightarrow \left[ \begin{array}{l}t = - \frac{{\sqrt 2 }}{2}\\t = \sqrt 2 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\sin x + \cos x = - \frac{{\sqrt 2 }}{2}\\\sin x + \cos x = \sqrt 2 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\sin \left( {x + \frac{\pi }{4}} \right) = - \frac{1}{2}\\\sin \left( {x + \frac{\pi }{4}} \right) = 1\end{array} \right.\) \( \Leftrightarrow \left[ \begin{array}{l}x + \frac{\pi }{4} = - \frac{\pi }{6} + k2\pi \\x + \frac{\pi }{4} = \frac{{7\pi }}{6} + k2\pi \\x + \frac{\pi }{4} = \frac{\pi }{2} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = - \frac{{5\pi }}{{12}} + k2\pi \\x = \frac{{11\pi }}{{12}} + k2\pi \\x = \frac{\pi }{4} + k2\pi \end{array} \right.\) \(\left( {k \in \mathbb{Z}} \right)\).Các bài khác cùng chuyên mục