Tiếp tuyến của đồ thị hàm số (y = fleft( x right)) tại điểm (left( {x;fleft( x right)} right)) có hệ số góc là (3{x^2} - 6x + 2). Tìm hàm số (y = fleft( x right)), biết đồ thị của nó đi qua điểm (left( { - 1;1} right)).
ꩵ
Xem lời giải
Cho hàm số (fleft( x right)) liên tục trên đoạn (left[ {0;5} right]). Tính (intlimits_0^5 {fleft( x right)dx} ), biết rằng
(intlimits_0^3 {fleft( x right)dx} = 4;intlimits_1^5 {fleft( x right)dx} = 6;intlimits_1^3 {fleft( x right)dx} = 3).
🗹
Xem lời giải
Cho hàm số (y = fleft( x right)) có đồ thị như hình bên. Biết rằng đạo hàm (f'left( x right)) liên tục trên (mathbb{R}). Tính (intlimits_{ - 1}^1 {f'left( x right)dx} ).
𒁏
Xem lời giải
Cho hàm số (fleft( x right)) liên tục trên (mathbb{R}), có đạo hàm (f'left( x right) = left{ begin{array}{l}4 - 3{{rm{x}}^2},x < 1\1 & ,x ge 1end{array} right.). Tính (fleft( 2 right) - fleft( 0 right)).
♚
Xem lời giải
Cho hàm số (fleft( x right)) liên tục trên đoạn (left[ {0;frac{pi }{2}} right]) và thoả mãn
(intlimits_0^{frac{pi }{2}} {left[ {3cos x + 2f'left( x right)} right]dx} = - 5;fleft( 0 right) = 1).
Tính giá trị (fleft( {frac{pi }{2}} right)).
ﷺ
Xem lời giải
Cho (D) là hình phẳng giới hạn bởi đồ thị của hàm số (y = sqrt x ), trục hoành và đường thẳng (x = 4). Đường thẳng (x = aleft( {0 < a < 4} right)) chia (D) thành hai phần có diện tích bằng nhau (Hình 3). Tính giá trị của (a).
𓃲
Xem lời giải
Tính thể tích khối tròn xoay tạo thành khi quay hình phẳng giới hạn bởi đồ thị của hàm số (y = 1 + {x^2}), trục hoành và hai đường thẳng (x = - 1,x = 1) quanh trục (Ox).
ꦰ
Xem lời giải
Một cột bê tông hình trụ có chiều cao 9 m. Nếu cắt cột bê tông bằng mặt phẳng nằm ngang cách chân cột \(x\left( m \right)\) thì mặt cắt là hình tròn có bán kính \(1 - \frac{{\sqrt x }}{4}\left( m \right)\) với \(0 \le x \le 9\). Tính thể tích của cột bê tông (kết quả làm tròn đến hàng phần trăm của mét khối).
𝔉
Xem lời giải