Trắc nghiệm Bài 17: Tính chất đường phân giác của tam giác Toán 8 Kết nối tri thứcĐề bài
Câu 1 :
Trong tam giác, đường… chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề hai đoạn thẳng ấy.Từ (cụm từ) thích hợp điền vào dấu … để được đáp án đúng là
Câu 2 :
Cho tam giác ABC có AD là phân giác trong của góc A. Khi đó,
Câu 3 :
Cho hình vẽ:
Câu 4 :
Cho tam giác ABC có AD là đường phân giác của tam giác. Biết rằng \(BD = 3cm,DC = 4cm.\) Khi đó, tỉ số \(\frac{{AB}}{{AC}}\) bằng:
Câu 5 :
Đáp án nào dưới đây có tỉ số \(\frac{{BD}}{{DC}} = \frac{3}{4}\) ?
Câu 6 :
Cho tam giác ABC có \(AB < AC,\) AD là đường phân giác. Khi đó:
Câu 7 :
Cho hình vẽ:
Câu 8 :
Cho tam giác ABC có \(AC = 2AB\) , AD là đường phân giác của góc BAC. Chọn đáp án đúng
Câu 9 :
Cho hình vẽ sau:
Câu 10 :
Cho tam giác ABC có đường trung tuyến AM. Tia phân giác của góc ABC lần lượt cắt các đoạn thẳng AM, AC tại điểm D, E. Chọn đáp án đúng.
Câu 11 :
Cho tam giác ABC có \(BC = 10cm.\) Vẽ AD là tia phân giác của góc BAC sao cho \(BD = 4cm.\) Tỉ số \(\frac{{AB}}{{AC}}\) là:
Câu 12 :
Cho tam giác ABC cân tại A, đường phân giác của góc ABC cắt AC tại D và \(AB = 15cm,BC = 10cm.\) Khi đó, độ dài đoạn thẳng AD bằng
Câu 13 :
Cho tam giác ABC có chu vi 27cm, các đường phân giác BD và CE. Biết rằng \(\frac{{AD}}{{DC}} = \frac{1}{2},\frac{{AE}}{{EB}} = \frac{3}{4}\) . Chọn đáp án đúng.
Câu 14 :
: Cho tam giác ABC với đường trung tuyến AM và phân giác AD. Biết rằng \(AB = m,AC = n\left( {n > m} \right)\) . Diện tích tam giác ADM là:
Câu 15 :
Cho hình bình hành ABCD có \(AB = a = 12,5cm,BC = b = 7,25cm.\) Đường phân giác của góc B cắt đường chéo AC tại E, đường phân giác của góc D cắt đường chéo AC tại F. Biết rằng \(FE = m = 3,45cm\) . Chọn đáp án đúng
Câu 16 :
Cho tam giác ABC có \(AB = 4cm,AC = 5cm,BC = 6cm\) , các đường phân giác BD, CE cắt nhau tại I. Tỉ số diện tích của các tam giác ADE và ABC là:
Câu 17 :
Cho tam giác ABC có \(AB = 8cm,AC = 12cm,\) đường phân giác AD. Trên đoạn AD lấy điểm E sao cho \(\frac{{AE}}{{AD}} = \frac{3}{5}.\) Gọi K là giao điểm của BE và AC. Tính tỉ số \(\frac{{AK}}{{KC}}\)
Câu 18 :
Cho tam giác ABC có \(AB = c,AC = b,BC = a,\) các đường phân giác AD, BE, CF cắt nhau ở I. Chọn đáp án đúng
Câu 19 :
Cho hình vẽ:
Câu 20 :
Cho tam giác ABC có \(AB = 2,BC = 3,CA = 4\) , AD là đường phân giác và I là giao điểm của ba đường phân giác của tam giác đó. Tính tỉ số \(\frac{{ID}}{{IA}}\)
Câu 21 :
Cho tam giác ABC có ba đường phân giác AD, BE, CF. Khi đó:
Câu 22 :
Cho tam giác ABC có AM là đường trung tuyến. Gọi MD, ME lần lượt là đường phân giác của các tam giác AMB và AMC. Gọi I là giao điểm của DE và AM. Chọn đáp án đúng.
Câu 23 :
Cho tam giác ABC có \(BA = BC = a,AC = b.\) Đường phân giác góc A cắt BC tại M, đường phân giác góc C cắt BA tại N. Tính MN
Lời giải và đáp án
Câu 1 :
Trong tam giác, đường… chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề hai đoạn thẳng ấy.Từ (cụm từ) thích hợp điền vào dấu … để được đáp án đúng là
Đáp án : B Phương pháp giải :
Sử dụng kiến thức về tính chất đường phân giác của tam giác: Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề hai đoạn thẳng ấy.
Lời giải chi tiết :
Trong tam giác, đường phân giác của một góc🦩 chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề hai đoạn thẳng ấy.
Câu 2 :
Cho tam giác ABC có AD là phân giác trong của góc A. Khi đó,
Đáp án : D Phương pháp giải :
Sử dụng kiến thức về tính chất đường phân giác của tam giác: Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề hai đoạn thẳng ấy.
Lời giải chi tiết :
Câu 3 :
Cho hình vẽ:
Đáp án : A Phương pháp giải :
Sử dụng kiến thức về tính chất đường phân giác của tam giác: Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề hai đoạn thẳng ấy.
Lời giải chi tiết :
Xét tam giác ABC có AD là đường phân giác của góc BAC nên \(\frac{{BD}}{{DC}} = \frac{{AB}}{{AC}}\) , do đó \(\frac{x}{y} = \frac{{3,5}}{{7,5}} = \frac{7}{{15}}\)
Câu 4 :
Cho tam giác ABC có AD là đường phân giác của tam giác. Biết rằng \(BD = 3cm,DC = 4cm.\) Khi đó, tỉ số \(\frac{{AB}}{{AC}}\) bằng:
Đáp án : C Phương pháp giải :
Sử dụng kiến thức về tính chất đường phân giác của tam giác: Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề hai đoạn thẳng ấy.
Lời giải chi tiết :
Câu 5 :
Đáp án nào dưới đây có tỉ số \(\frac{{BD}}{{DC}} = \frac{3}{4}\) ?
Đáp án : A Phương pháp giải :
Sử dụng kiến thức về tính chất đường phân giác của tam giác: Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề hai đoạn thẳng ấy.
Lời giải chi tiết :
Đáp án A: Xét tam giác ABC có AD là đường phân giác của góc BAC nên \(\frac{{AB}}{{AC}} = \frac{{BD}}{{DC}} = \frac{3}{4}\) Đáp án B, C không đúng.
Câu 6 :
Cho tam giác ABC có \(AB < AC,\) AD là đường phân giác. Khi đó:
Đáp án : A Phương pháp giải :
Sử dụng kiến thức về tính chất đường phân giác của tam giác: Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề hai đoạn thẳng ấy
Lời giải chi tiết :
Câu 7 :
Cho hình vẽ:
Đáp án : D Phương pháp giải :
Sử dụng kiến thức về tính chất đường phân giác của tam giác: Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề hai đoạn thẳng ấy
Lời giải chi tiết :
Xét tam giác EDF có EM là tia phân giác của góc FED nên \(\frac{{DM}}{{MF}} = \frac{{ED}}{{FE}}\) hay \(\frac{{3,5}}{{5,6}} = \frac{{4,5}}{x}\) \(x = \frac{{4,5.5,6}}{{3,5}} = \frac{{36}}{5}\)
Câu 8 :
Cho tam giác ABC có \(AC = 2AB\) , AD là đường phân giác của góc BAC. Chọn đáp án đúng
Đáp án : D Phương pháp giải :
Sử dụng kiến thức về tính chất đường phân giác của tam giác: Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề hai đoạn thẳng ấy.
Lời giải chi tiết :
Câu 9 :
Cho hình vẽ sau:
Đáp án : D Phương pháp giải :
Sử dụng kiến thức về tính chất đường phân giác của tam giác: Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề hai đoạn thẳng ấy.
Lời giải chi tiết :
Vì hai tam giác ADC và ADB có cùng đường cao xuất phát từ đỉnh A xuống BC.Do đó, \(\frac{{{S_{ABD}}}}{{{S_{ADC}}}} = \frac{{BD}}{{DC}}\) Trong tam giác ABC có AD là đường phân giác của góc BAC nên \(\frac{{BD}}{{DC}} = \frac{{AB}}{{AC}} = \frac{{15}}{{20}} = \frac{3}{4}\) Vậy \(\frac{{{S_{ABD}}}}{{{S_{ADC}}}} = \frac{3}{4}\)
Câu 10 :
Cho tam giác ABC có đường trung tuyến AM. Tia phân giác của góc ABC lần lượt cắt các đoạn thẳng AM, AC tại điểm D, E. Chọn đáp án đúng.
Đáp án : C Phương pháp giải :
Sử dụng kiến thức về tính chất đường phân giác của tam giác: Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề hai đoạn thẳng ấy.
Lời giải chi tiết :
Câu 11 :
Cho tam giác ABC có \(BC = 10cm.\) Vẽ AD là tia phân giác của góc BAC sao cho \(BD = 4cm.\) Tỉ số \(\frac{{AB}}{{AC}}\) là:
Đáp án : D Phương pháp giải :
Sử dụng kiến thức về tính chất đường phân giác của tam giác: Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề hai đoạn thẳng ấy.
Lời giải chi tiết :
Câu 12 :
Cho tam giác ABC cân tại A, đường phân giác của góc ABC cắt AC tại D và \(AB = 15cm,BC = 10cm.\) Khi đó, độ dài đoạn thẳng AD bằng
Đáp án : C Phương pháp giải :
Sử dụng kiến thức về tính chất đường phân giác của tam giác: Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề hai đoạn thẳng ấy.
Lời giải chi tiết :
Câu 13 :
Cho tam giác ABC có chu vi 27cm, các đường phân giác BD và CE. Biết rằng \(\frac{{AD}}{{DC}} = \frac{1}{2},\frac{{AE}}{{EB}} = \frac{3}{4}\) . Chọn đáp án đúng.
Đáp án : B Phương pháp giải :
Sử dụng kiến thức về tính chất đường phân giác của tam giác: Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề hai đoạn thẳng ấy.
Lời giải chi tiết :
Vì BD, CE là các đường phân giác trong tam giác ABC nên:
Câu 14 :
: Cho tam giác ABC với đường trung tuyến AM và phân giác AD. Biết rằng \(AB = m,AC = n\left( {n > m} \right)\) . Diện tích tam giác ADM là:
Đáp án : D Phương pháp giải :
Sử dụng kiến thức về tính chất đường phân giác của tam giác: Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề hai đoạn thẳng ấy.
Lời giải chi tiết :
Câu 15 :
Cho hình bình hành ABCD có \(AB = a = 12,5cm,BC = b = 7,25cm.\) Đường phân giác của góc B cắt đường chéo AC tại E, đường phân giác của góc D cắt đường chéo AC tại F. Biết rằng \(FE = m = 3,45cm\) . Chọn đáp án đúng
Đáp án : A Phương pháp giải :
Sử dụng kiến thức về tính chất đường phân giác của tam giác: Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề hai đoạn thẳng ấy.
Lời giải chi tiết :
Câu 16 :
Cho tam giác ABC có \(AB = 4cm,AC = 5cm,BC = 6cm\) , các đường phân giác BD, CE cắt nhau tại I. Tỉ số diện tích của các tam giác ADE và ABC là:
Đáp án : B Phương pháp giải :
Sử dụng kiến thức về tính chất đường phân giác của tam giác: Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề hai đoạn thẳng ấy.
Lời giải chi tiết :
\(\frac{{AE}}{{EB}} = \frac{{AC}}{{BC}} \Rightarrow \frac{{AE}}{{AC}} = \frac{{EB}}{{BC}}\) hay \(\frac{{AE}}{5} = \frac{{EB}}{6}\)
Câu 17 :
Cho tam giác ABC có \(AB = 8cm,AC = 12cm,\) đường phân giác AD. Trên đoạn AD lấy điểm E sao cho \(\frac{{AE}}{{AD}} = \frac{3}{5}.\) Gọi K là giao điểm của BE và AC. Tính tỉ số \(\frac{{AK}}{{KC}}\)
Đáp án : A Phương pháp giải :
Sử dụng kiến thức về tính chất đường phân giác của tam giác: Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề hai đoạn thẳng ấy.
Lời giải chi tiết :
Câu 18 :
Cho tam giác ABC có \(AB = c,AC = b,BC = a,\) các đường phân giác AD, BE, CF cắt nhau ở I. Chọn đáp án đúng
Đáp án : C Phương pháp giải :
Sử dụng kiến thức về tính chất đường phân giác của tam giác: Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề hai đoạn thẳng ấy.
Lời giải chi tiết :
Câu 19 :
Cho hình vẽ:
Đáp án : B Phương pháp giải :
Sử dụng kiến thức về tính chất đường phân giác của tam giác: Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề hai đoạn thẳng ấy.
Lời giải chi tiết :
Ta có: \(HF = GF - GH = 20 - x\) Xét tam giác GEF có EH là đường phân giác của góc GEF nên \(\frac{{GH}}{{HF}} = \frac{{EG}}{{FE}}\) hay \(\frac{x}{{20 - x}} = \frac{{18}}{{12}}\) \(12x = 18\left( {20 - x} \right)\) \(12x = 360 - 18x\) \(30x = 360\) \(x = 12\)
Câu 20 :
Cho tam giác ABC có \(AB = 2,BC = 3,CA = 4\) , AD là đường phân giác và I là giao điểm của ba đường phân giác của tam giác đó. Tính tỉ số \(\frac{{ID}}{{IA}}\)
Đáp án : C Phương pháp giải :
Sử dụng kiến thức về tính chất đường phân giác của tam giác: Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề hai đoạn thẳng ấy.
Lời giải chi tiết :
Câu 21 :
Cho tam giác ABC có ba đường phân giác AD, BE, CF. Khi đó:
Đáp án : B Phương pháp giải :
Sử dụng kiến thức về tính chất đường phân giác của tam giác: Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề hai đoạn thẳng ấy.
Lời giải chi tiết :
Câu 22 :
Cho tam giác ABC có AM là đường trung tuyến. Gọi MD, ME lần lượt là đường phân giác của các tam giác AMB và AMC. Gọi I là giao điểm của DE và AM. Chọn đáp án đúng.
Đáp án : D Phương pháp giải :
Sử dụng kiến thức về tính chất đường phân giác của tam giác: Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề hai đoạn thẳng ấy.
Lời giải chi tiết :
Câu 23 :
Cho tam giác ABC có \(BA = BC = a,AC = b.\) Đường phân giác góc A cắt BC tại M, đường phân giác góc C cắt BA tại N. Tính MN
Đáp án : B Phương pháp giải :
Sử dụng kiến thức về tính chất đường phân giác của tam giác: Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề hai đoạn thẳng ấy.
Lời giải chi tiết :
|