Giải mục 5 trang 28, 29 SGK Toán 11 tập 1 - Kết nối tri thứcCho hàm số \(y = \tan x\) a) Xét tính chẵn, lẻ của hàm sốꦺTổng hợp đề thi học kì 2 lớp 11 tất cả các môn - Kết nối tri thức Toán - Văn - Anh - Lí - Hóa - SinhQuảng cáo
Lựa chọn câu để xem lời giải nhanh hơn
Hoạt động 6 Cho hàm số \(y = \tan x\) a) Xét tính chẵn, lẻ của hàm số b) Hoàn thành bảng giá trị của hàm số \(y = \tan x\) trên khoảng\(\;\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\).
Phương pháp giải: Sử dụng định nghĩa hàm số chẵn lẻ Dựa vào đồ thị để xác định tập giá trị, các khoảng đồng biến, nghịch biến của hàm số.Lời giải chi tiết: a) Tập xác định của hàm số là \(D = \mathbb{R}\;\backslash \left\{ {\frac{\pi }{2} + k\pi {\rm{|}}\;k\; \in \;\mathbb{Z}} \right\}\)Do đó, nếu x thuộc tập xác định D thì –x cũng thuộc tập xác định D Ta có: \(f\left( { - x} \right) = \tan \left( { - x} \right) = - \tan x = - f\left( x \right),\;\forall x\; \in \;D\) Vậy \(y = \tan x\) là hàm số lẻ. b)
Luyện tập Sử dụng đồ thị đã vẽ ở Hình 1.16, hãy xác định các giá trị của x🦩 trên đoạn \(\left[ { - \pi ;\frac{{3\pi }}{2}} \right]\) để hàm số \(y = \tan x\) nhận giá trị âm. Phương pháp giải: Nhìn đồ thị để xác định vị trí của y và xLời giải chi tiết: Hàm số nhận giá trị âm ứng với phần đồ thị nằm dưới trục hoành. Từ đồ thị ta suy ra trên đoạn \(\left[ { - \pi ;\frac{{3\pi }}{2}} \right]\), thì \(y < 0\) khi \(x\; \in \left( { - \frac{\pi }{2};0} \right) \cup \left( {\frac{\pi }{2};\;\pi } \right)\)
Quảng cáo
Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí |