Giải mục 2 trang 6,7,8 SGK Toán 12 tập 2 - Kết nối tri thứcTính chất cơ bản của nguyên hàm▨Tổng hợp đề thi học kì 2 lớp 12 tất cả các môn - Kết nối tri thức Toán - Văn - Anh - Hoá - Sinh - Sử - ĐịaQuảng cáo
Lựa chọn câu để xem lời giải nhanh hơn
Câu 1 Trả lời câu hỏi Hoạt động 3 trang 6 SGK Toán 12 Kết nối tri thức Phương pháp giải: Sử dụng kiến thức về khái niệm nguyên hàm của một hàm số để chứng minh: Cho hàm số f(x) xác định trên một khoảng K (hoặc một đoạn, hoặc một nửa khoảng). Hàm số F(x) được gọi là một nguyên hàm của hàm số f(x) trên K nếu \(F'\left( x \right) = f\left( x \right)\) với mọi x thuộc K. Sử dụng kiến thức về họ nguyên hàm của một hàm số để tính: Để tìm nguyên hàm của hàm số f(x) trên K, ta chỉ cần tìm một nguyên hàm F(x) của f(x) trên K và khi đó \(\int {f\left( x \right)dx = F\left( x \right) + C} \), C là hằng số.Lời giải chi tiết: a) Vì F(x) là một nguyên hàm của f(x) trên K nên \(F'\left( x \right) = f\left( x \right)\) nên \(kF'\left( x \right) = kf\left( x \right)\) (với k khác 0). Do đó, kF(x) là một nguyên hàm của hàm số kf(x) trên K. b) Ta có: \(\int {kf\left( x \right)dx} = k\int {f\left( x \right)dx} \)LT3 Trả lời câu hỏi Luyện tập 3 trang 7 SGK Toán 12 Kết nối tri thức Phương pháp giải: Sử dụng kiến thức về khái niệm nguyên hàm của một hàm số để chứng minh: Cho hàm số f(x) xác định trên một khoảng K (hoặc một đoạn, hoặc một nửa khoảng). Hàm số F(x) được gọi là một nguyên hàm của hàm số f(x) trên K nếu \(F'\left( x \right) = f\left( x \right)\) với mọi x thuộc K. Sử dụng kiến thức về họ nguyên hàm của một hàm số để tính: Để tìm nguyên hàm của hàm số f(x) trên K, ta chỉ cần tìm một nguyên hàm F(x) của f(x) trên K và khi đó \(\int {f\left( x \right)dx = F\left( x \right) + C} \), C là hằng số. Sử dụng tính chất cơ bản của nguyên hàm để tính: \(\int {kf\left( x \right)dx} = k\int {f\left( x \right)dx} \)Lời giải chi tiết: a) Ta có: \(F'\left( x \right) = {\left( {\frac{{{x^{n + 1}}}}{{n + 1}}} \right)'} = \frac{{\left( {n + 1} \right){x^n}}}{{n + 1}} = {x^n} = f\left( x \right)\) nên hàm số F(x) là một nguyên hàm của hàm số f(x). Do đó, \(\int {{x^n}dx} = \frac{{{x^{n + 1}}}}{{n + 1}} + C\). b) \(\int {k{x^n}dx} = k\int {{x^n}dx} = \frac{{k.{x^{n + 1}}}}{{n + 1}} + C\).HĐ4 Trả lời câu hỏi Hoạt động 4 trang 7 SGK Toán 12 Kết nối tri thức Phương pháp giải: Sử dụng kiến thức về khái niệm nguyên hàm của một hàm số để chứng minh: Cho hàm số f(x) xác định trên một khoảng K (hoặc một đoạn, hoặc một nửa khoảng). Hàm số F(x) được gọi là một nguyên hàm của hàm số f(x) trên K nếu \(F'\left( x \right) = f\left( x \right)\) với mọi x thuộc K. Sử dụng kiến thức về họ nguyên hàm của một hàm số để tính: Để tìm nguyên hàm của hàm số f(x) trên K, ta chỉ cần tìm một nguyên hàm F(x) của f(x) trên K và khi đó \(\int {f\left( x \right)dx = F\left( x \right) + C} \), C là hằng số.Lời giải chi tiết: LT4 Trả lời câu hỏi Luyện tập 4 trang 7 SGK Toán 12 Kết nối tri thức Phương pháp giải: Sử dụng tính chất cơ bản của nguyên hàm để tính: \(\int {kf\left( x \right)dx} = k\int {f\left( x \right)dx} \) Sử dụng kiến thức về nguyên hàm một tổng để tính: \(\int {\left[ {f\left( x \right) + g\left( x \right)} \right]} \,dx = \int {f\left( x \right)dx + \int {g\left( x \right)dx} } \), \(\int {\left[ {f\left( x \right) - g\left( x \right)} \right]} \,dx = \int {f\left( x \right)dx - \int {g\left( x \right)dx} } \)Lời giải chi tiết: a) \(\int {\left( {3{x^2} + 1} \right)dx} = 3\int {{x^2}dx + \int {1dx = {x^3} + x + C} } \); b) \(\int {{{\left( {2x - 1} \right)}^2}dx} = \int {\left( {4{x^2} - 4x + 1} \right)dx = 4\int {{x^2}dx - 4\int {xdx + \int {dx = \frac{{4{x^3}}}{3} - 2{x^2} + x + C} } } } \).VD Trả lời câu hỏi Vận dụng trang 8 SGK Toán 12 Kết nối tri thức Phương pháp giải: Sử dụng kiến thức về nguyên hàm của hàm số để tính: Vì \({M_R}\left( x \right) = R'\left( x \right)\) nên doanh thu R(x) là một nguyên hàm của \({M_R}\left( x \right)\).Lời giải chi tiết: Ta có: \(\int {{M_R}\left( x \right)dx = \int {\left( {300 - 0,1x} \right)dx = 300\int {dx - 0,1\int {xdx = 300x - 0,05{x^2} + C} } } } \) Do đó, \(R\left( x \right) = 300x - 0,05{x^2} + C\) Ta có: \(R\left( 0 \right) = 0\) nên \(C = 0\). Do đó, \(R\left( x \right) = 300x - 0,05{x^2}\) Doanh thu của công ty khi đã bán 1 000 con chíp là: \(R\left( {1000} \right) = 300.1000 - 0,{05.1000^2} = 250\;000\) (triệu đồng)
Quảng cáo
Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí |