ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số

Giải mục 2 trang 120, 121 SGK Toán 11 tập 1 - Kết nối tri thức

Cho hai hàm số (fleft( x right) = left{ {begin{array}{*{20}{c}}{2x;,;0 le x le frac{1}{2}}{1;,frac{1}{2} < x le 1}end{array}} right.) và (gleft( x right) = left{ {begin{array}{*{20}{c}}{x;,0 le x le frac{1}{2}}{1;,frac{1}{2} < x le 1}end{array}} right.)

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho ufa999.cc và nhận về những phần quà hấp dẫn
Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

HĐ2

Video hướng dẫn giải

Trả lời câu hỏi Hoạt động 2 trang 120 SGK Toán 11 Kết nối tri thức

Cho hai hàm số \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{2x\;,\;0 \le x \le \frac{1}{2}}\\{1\;,\frac{1}{2} < x \le 1}\end{array}} \right.\) và \(g\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{x\;,0 \le x \le \frac{1}{2}}\\{1\;,\frac{1}{2} < x \le 1}\end{array}} \right.\)với đồ thị tương ứng như Hình 5.7

ꦅXét tính liên tục của các hàm số f(x) và g(x) tại điểm \(x = \frac{1}{2}\) và nhận xét về sự khác nhau giữa hai đồ thị.

Phương pháp giải:

Hàm số \(f\left( x \right)\) liên tục trên khoảng \(\left( {a,b} \right)\) nếu nó liên tục tại mọi điểm thuộc khoảng này. Hàm số \(f\left( x \right)\) liên tục trên đoạn \(\left[ {a,b} \right]\) nếu nó liên tục trên khoảng \(\left( {a,b} \right)\) và

\(\mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right) = f\left( a \right),\;\) \(\mathop {\lim }\limits_{x \to {b^ - }} f\left( x \right) = f\left( b \right)\)

Lời giải chi tiết:

\(\mathop {\lim }\limits_{x \to {{\left( {\frac{1}{2}} \right)}^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {{\left( {\frac{1}{2}} \right)}^ - }} 2x = 1\); \(\mathop {\lim }\limits_{x \to {{\left( {\frac{1}{2}} \right)}^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {{\left( {\frac{1}{2}} \right)}^ + }} 1 = 1\); \(f\left( {\frac{1}{2}} \right) = 1\). Vậy \(f\left( x \right)\) liên tục tại \(x = \frac{1}{2}\). \(\mathop {\lim }\limits_{x \to {{\left( {\frac{1}{2}} \right)}^ - }} g\left( x \right) = \mathop {\lim }\limits_{x \to {{\left( {\frac{1}{2}} \right)}^ - }} x = \frac{1}{2}\); \(\mathop {\lim }\limits_{x \to {{\left( {\frac{1}{2}} \right)}^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {{\left( {\frac{1}{2}} \right)}^ - }} 1 = 1\); \(g\left( {\frac{1}{2}} \right) = \frac{1}{2}\). Vậy \(g\left( x \right)\) gián đoạn tại \(x = \frac{1}{2}\). Đồ thị \(f\left( x \right)\) liên tục trên đoạn \(\left[ {0;1} \right],\) đồ thị \(g\left( x \right)\) bị gián đoạn tại \(x = \frac{1}{2}\).

LT2

Video hướng dẫn giải

Trả lời câu hỏi Luyện tập 2 trang 121 SGK Toán 11 Kết nối tri thức

Tìm các khoảng trên đó hàm số \(f\left( x \right) = \frac{{{x^2} + 1}}{{x + 2}}\) liên tục.

Phương pháp giải:

Hàm phân thức liên tục trên tập xác định.

Lời giải chi tiết:

Tập xác định của \(f\left( x \right)\) là \(\left( { - \infty ;\; - 2} \right) \cup \left( { - 2;\; + \infty } \right)\).

Vây hàm số \(f\left( x \right)\) liên tục trên các khoảng \(\left( { - \infty ; - 2} \right);\left( { - 2; + \infty } \right)\).

Quảng cáo

Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close
{muse là gì}|🦩{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số press}|💮{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số city}|ไ{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số city}|{copa america tổ chức mấy năm 1 lần}|𝐆{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số đăng nhập}|{binh xập xám}|൩{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số fan}|{xì dách online}|🌟{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số best}|