ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số

Giải bài tập 8 trang 79 SGK Toán 12 tập 2 - Cánh diều

Tính góc giữa đường thẳng \(\Delta \) và mặt phẳng (P) trong mỗi trường hợp sau (làm tròn kết quả đến hàng đơn vị của độ): a) \(\Delta :\left\{ \begin{array}{l}x = 1 + \sqrt 3 t\\y = 2\\z = 3 + t\end{array} \right.\) (t là tham số) và \(\left( P \right):\sqrt 3 x + z - 2 = 0\); b) \(\Delta :\left\{ \begin{array}{l}x = 1 + t\\y = 2 - t\\z = 3 + t\end{array} \right.\) (t là tham số) và \(\left( P \right):x + y + z - 4 = 0\).

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho ufa999.cc và nhận về những phần quà hấp dẫn
Quảng cáo

Đề bài

Tính góc giữa đường thẳng \(\Delta \) và mặt phẳng (P) trong mỗi trường hợp sau (làm tròn kết quả đến hàng đơn vị của độ): a) \(\Delta :\left\{ \begin{array}{l}x = 1 + \sqrt 3 t\\y = 2\\z = 3 + t\end{array} \right.\) (t là tham số) và \(\left( P \right):\sqrt 3 x + z - 2 = 0\); b) \(\Delta :\left\{ \begin{array}{l}x = 1 + t\\y = 2 - t\\z = 3 + t\end{array} \right.\) (t là tham số) và \(\left( P \right):x + y + z - 4 = 0\).

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về côsin góc giữa đường thẳng và mặt phẳng để tính: Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(\Delta \) có vectơ chỉ phương \(\overrightarrow u  = \left( {{a_1};{b_1};{c_1}} \right)\) và mặt phẳng (P) có vectơ pháp tuyến \(\overrightarrow n  = \left( {{a_2};{b_2};{c_2}} \right)\). Gọi \(\left( {\Delta ,\left( P \right)} \right)\) là góc giữa đường thẳng \(\Delta \) và mặt phẳng (P). Khi đó, \(\sin \left( {\Delta ,\left( P \right)} \right) = \left| {\cos \left( {\overrightarrow u ,\overrightarrow n } \right)} \right| = \frac{{\left| {\overrightarrow u .\overrightarrow n } \right|}}{{\left| {\overrightarrow u } \right|.\left| {\overrightarrow n } \right|}} = \frac{{\left| {{a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2}} \right|}}{{\sqrt {a_1^2 + b_1^2 + c_1^2} .\sqrt {a_2^2 + b_2^2 + c_2^2} }}\).

Lời giải chi tiết

a) Đường thẳng \(\Delta \) có một vectơ chỉ phương \(\overrightarrow u  = \left( {\sqrt 3 ;0;1} \right)\). Mặt phẳng (P) có một vectơ pháp tuyến \(\overrightarrow n  = \left( {\sqrt 3 ;0;1} \right)\). Ta có: \(\sin \left( {\left( P \right),\Delta } \right) = \frac{{\left| {\sqrt 3 .\sqrt 3  + 0.0 + 1.1} \right|}}{{\sqrt {{{\left( {\sqrt 3 } \right)}^2} + {0^2} + {1^2}} .\sqrt {{{\left( {\sqrt 3 } \right)}^2} + {0^2} + {1^2}} }} = \frac{4}{4} = 1\) nên \(\left( {\left( P \right),\Delta } \right) = {90^o}\). b) Đường thẳng \(\Delta \) có một vectơ chỉ phương \(\overrightarrow u  = \left( {1; - 1;1} \right)\). Mặt phẳng (P) có một vectơ pháp tuyến \(\overrightarrow n  = \left( {1;1;1} \right)\). Ta có: \(\sin \left( {\left( P \right),\Delta } \right) = \frac{{\left| {1.1 + \left( { - 1} \right).1 + 1.1} \right|}}{{\sqrt {{1^2} + {{\left( { - 1} \right)}^2} + {1^2}} .\sqrt {{1^2} + {1^2} + {1^2}} }} = \frac{1}{3}\) nên \(\left( {\left( P \right),\Delta } \right) \approx {19^o}\).

  • 🔴 Giải bài tập 9 trang 79 SGK Toán 12 tập 2 - Cánh diều Tính góc giữa hai mặt phẳng \(\left( {{P_1}} \right):x + y + 2z - 1 = 0\) và \(\left( {{P_2}} \right):2x - y + z - 2 = 0\).
  • 𓃲 Giải bài tập 10 trang 80 SGK Toán 12 tập 2 - Cánh diều Trong không gian với hệ tọa độ Oxyz, cho hình chóp S. ABCD có các đỉnh lần lượt là (Sleft( {0;0;frac{{asqrt 3 }}{2}} right),Aleft( {frac{a}{2};0;0} right),Bleft( { - frac{a}{2};0;0} right),Cleft( { - frac{a}{2};a;0} right),Dleft( {frac{a}{2};a;0} right)) với (a > 0) (Hình 36).
  • 🍸 Giải bài tập 11 trang 80 SGK Toán 12 tập 2 - Cánh diều Trong không gian với hệ tọa độ Oxyz (đơn vị trên mỗi trục tọa độ là kilômét), một máy bay đang ở vị trí (Aleft( {3,5; - 2;0,4} right)) và sẽ hạ cánh ở vị trí [Bleft( {3,5;5,5;0} right)] trên đường băng EG (Hình 37).
  • ⭕ Giải bài tập 7 trang 79 SGK Toán 12 tập 2 - Cánh diều Tính góc giữa hai đường thẳng \({\Delta _1},{\Delta _2}\) trong mỗi trường hợp sau (làm tròn kết quả đến hàng đơn vị của độ): a) \({\Delta _1}:\left\{ \begin{array}{l}x = - 1 + {t_1}\\y = 4 + \sqrt 3 {t_1}\\z = 0\end{array} \right.\) và \({\Delta _2}:\left\{ \begin{array}{l}x = - 1 + \sqrt 3 {t_2}\\y = 4 + {t_2}\\z = 5\end{array} \right.\) (\({t_1},{t_2}\) là tham số); b) \({\Delta _1}:\left\{ \begin{array}{l}x = - 1 + 2t\\y = 3 + t\\z = 4 - t\end{array} \right.\) (t là tham số) và \({\Del
  • ไ Giải bài tập 6 trang 79 SGK Toán 12 tập 2 - Cánh diều Xác định vị trí tương đối của hai đường thẳng \({\Delta _1},{\Delta _2}\) trong mỗi trường hợp sau: a) \({\Delta _1}:\frac{{x - 1}}{2} = \frac{{y - 2}}{1} = \frac{{z - 3}}{{ - 1}}\) và \({\Delta _2}:\left\{ \begin{array}{l}x = - 11 - 6t\\y = - 6 - 3t\\z = 10 + 3t\end{array} \right.\) (t là tham số); b) \({\Delta _1}:\left\{ \begin{array}{l}x = 1 + 3t\\y = 2 + 4t\\z = 3 + 5t\end{array} \right.\) (t là tham số) và \({\Delta _2}:\frac{{x + 3}}{1} = \frac{{y + 6}}{2} = \frac{{z - 15}}{{ - 3}}\)
Quảng cáo

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

close
{muse là gì}|ꦍ{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số press}|🐼{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số city}|𓂃{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số city}|{copa america tổ chức mấy năm 1 lần}|🐷{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số đăng nhập}|{binh xập xám}|🔜{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số fan}|{xì dách online}|🍌{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số best}|