Giải bài tập 4.40 trang 38 SGK Toán 12 tập 2 - Cùng khám pháGọi \(D\) là hình phẳng giới hạn bởi các đường \(y = {e^{2x}},y = 0,x = 0\) và \(x = 1\). Thể tích khối tròn xoay tạo thành khi quay \(D\) quanh trục \(Ox\) bằng: A. \(\pi \int_0^1 {{e^{4x}}} {\mkern 1mu} dx\) B. \(\pi \int_0^1 {{e^{2x}}} {\mkern 1mu} dx\) C. \(\int_0^1 {{e^{2x}}} {\mkern 1mu} dx\) D. \(\int_0^1 {{e^{4x}}} {\mkern 1mu} dx\)Quảng cáo
Đề bài Gọi \(D\) là hình phẳng giới hạn bởi các đường \(y = {e^{2x}},y = 0,x = 0\) và \(x = 1\). Thể tích khối tròn xoay tạo thành khi quay \(D\) quanh trục \(Ox\) bằng: A. \(\pi \int_0^1 {{e^{4x}}} {\mkern 1mu} dx\) B. \(\pi \int_0^1 {{e^{2x}}} {\mkern 1mu} dx\) C. \(\int_0^1 {{e^{2x}}} {\mkern 1mu} dx\) D. \(\int_0^1 {{e^{4x}}} {\mkern 1mu} dx\)Phương pháp giải - Xem chi tiết
Khi quay hình phẳng giới hạn bởi đồ thị hàm số \(y = f(x)\) quanh trục hoành \(Ox\), thể tích khối tròn xoay được tính bởi công thức:
\(V = \pi \int_a^b f {(x)^2}{\mkern 1mu} dx.\)
Lời giải chi tiết Với hàm \(y = {e^{2x}}\), thể tích khối tròn xoay tạo thành khi quay hình phẳng quanh trục \(Ox\) là: \(V = \pi \int_0^1 {{{\left( {{e^{2x}}} \right)}^2}} {\mkern 1mu} dx = \pi \int_0^1 {{e^{4x}}} {\mkern 1mu} dx.\) Chọn A.
Quảng cáo
Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí |