Giải bài tập 14 trang 89 SGK Toán 12 tập 2 - Cánh diềuTrong không gian với hệ toạ độ Oxyz, đài kiểm soát không lưu sân bay có toạ độ O(0; 0; 0), mỗi đơn vị trên trục ứng với 1 km. Máy bay bay trong phạm vi cách đài kiểm soát 417km sẽ hiển thị trên màn hình ra đa. Một máy bay đang ở vị trí A(– 688; – 185; 8), chuyển động theo đường thẳng d có vectơ chỉ phương là (overrightarrow u = left( {91;75;0} right)) hướng về đài kiểm soát không lưu (Hình 44).
Toán - Văn - Anh - Hoá - Sinh - Sử - Địa
Quảng cáo
Đề bài Trong không gian với hệ toạ độ Oxyz, đài kiểm soát không lưu sân bay có toạ độ O(0; 0; 0), mỗi đơn vị trên trục ứng với 1 km. Máy bay bay trong phạm vi cách đài kiểm soát 417km sẽ hiển thị trên màn hình ra đa. Một máy bay đang ở vị trí A(– 688; – 185; 8), chuyển động theo đường thẳng d có vectơ chỉ phương là \(\overrightarrow u = \left( {91;75;0} \right)\) hướng về đài kiểm soát không lưu (Hình 44). Phương pháp giải - Xem chi tiết
a) + Viết phương trình đường thẳng d đi qua điểm A và có một vectơ chỉ phương \(\overrightarrow u \).
+ Gọi B là vị trí sớm nhất mà máy bay xuất hiện trên màn hình ra đa. B thuộc d nên tính tọa độ của B theo t.
+ B là vị trí sớm nhất mà máy bay xuất hiện trên màn hình ra đa thì \(OB = 417\). Từ đó có phương trình theo ẩn t, giải phương trình tính t.
+ Thay giá trị t tính được để tìm tọa độ B, so sánh giá trị và được ra kết luận.
b) + Gọi H là vị trí mà máy bay gần đài kiểm soát không lưu nhất.
+ Vì H thuộc d nên tính tọa độ của H theo t’.
+ OH ngắn nhất khi và chỉ khi \(OH \bot d \Leftrightarrow \overrightarrow {OH} \bot \overrightarrow u \Leftrightarrow \overrightarrow {OH} .\overrightarrow u = 0\), từ đó tính được t’.
+ Từ đó tính được H và khoảng cách OH cần tìm.
Lời giải chi tiết a) Đường thẳng d đi qua điểm A(-688;-185;8), có một vectơ chỉ phương \(\overrightarrow u = \left( {91;75;0} \right)\) có phương trình tham số là: \(\left\{ \begin{array}{l}x = - 688 + 91t\\y = - 185 + 75t\\z = 8\end{array} \right.\) (t là tham số). Gọi B là vị trí sớm nhất mà máy bay xuất hiện trên màn hình ra đa. Vì B thuộc d nên B(-688 + 91t; -185 + 75t; 8). Để B là vị trí sớm nhất mà máy bay xuất hiện trên màn hình ra đa thì \(OB = 417\). Do đó, \(\sqrt {{{\left( { - 688 + 91t} \right)}^2} + {{\left( { - 185 + 75t} \right)}^2} + {8^2}} = 417\) \( \Leftrightarrow 13\;906{t^2} - 152\;966t + 333\;744 = 0\)\( \Leftrightarrow t = 3\) hoặc \(t = 8\). Với \(t = 3\) ta có B(-415; 40; 8) và \(AB = \sqrt {{{\left( { - 415 + 688} \right)}^2} + {{\left( {40 + 185} \right)}^2}} = \sqrt {125\;154} \). Với \(t = 8\) ta có B(40; 415; 8) và \(AB = \sqrt {{{\left( {40 + 688} \right)}^2} + {{\left( {415 + 185} \right)}^2}} = \sqrt {889\;984} \). Vì \(\sqrt {125\;154} < \sqrt {889\;984} \) nên tọa độ vị trí sớm nhất mà máy bay xuất hiện trên màn hình ra đa là (-415; 40; 8). b) Gọi H là vị trí mà máy bay gần đài kiểm soát không lưu nhất. Vì H thuộc d nên H(-688+91t’; -185+75t’;8). Để OH là ngắn nhất khi và chỉ khi \(OH \bot d \Leftrightarrow \overrightarrow {OH} \bot \overrightarrow u \Leftrightarrow \overrightarrow {OH} .\overrightarrow u = 0\) \( \Leftrightarrow \left( { - 688 + 91t'} \right).91 + \left( { - 185 + 75t'} \right).75 + 8.0 = 0 \Leftrightarrow 13\;906t' - 76\;483 = 0 \Leftrightarrow t' = \frac{{11}}{2}\). Do đó, \(H\left( {\frac{{ - 375}}{2};\frac{{455}}{2};8} \right)\). Khoảng cách giữa máy bay và đài kiểm soát không lưu lúc đó là: \(OH = \sqrt {{{\left( {\frac{{ - 375}}{2}} \right)}^2} + {{\left( {\frac{{455}}{2}} \right)}^2} + {8^2}} = \frac{{\sqrt {347\;906} }}{2}\left( {km} \right)\). c) Theo a ta có: tọa độ của vị trí mà máy bay ra khỏi màn hình ra đa là: (40; 415; 8).
Quảng cáo
Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí |