Giải bài tập 1 trang 70 SGK Toán 9 tập 1 - Cánh diềuÁp dụng quy tắc về căn thức bậc hai của một bình phương, hãy rút gọn biểu thức: a. (sqrt {left( {5 - x} right)_{}^2} ) với (x ge 5); b. (sqrt {left( {x - 3} right)_{}^4} ); c. (sqrt {left( {y + 1} right)_{}^6} ) với (y < - 1).
Gửi góp ý cho ufa999.cc và nhận về những phần quà hấp dẫn
Quảng cáo
Đề bài Áp dụng quy tắc về căn thức bậc hai của một bình phương, hãy rút gọn biểu thức: a. \(\sqrt {\left( {5 - x} \right)_{}^2} \) với \(x \ge 5\); b. \(\sqrt {\left( {x - 3} \right)_{}^4} \); c. \(\sqrt {\left( {y + 1} \right)_{}^6} \) với \(y < - 1\).Video hướng dẫn giải Phương pháp giải - Xem chi tiết
+ Đưa bình phương về trị tuyệt đối;
+ Xét xem biểu thức trong trị tuyệt đối lớn hơn 0 hay nhỏ hơn 0;
+ Phá trị tuyệt đối.
Lời giải chi tiết a. \(\sqrt {\left( {5 - x} \right)_{}^2} = \left| {5 - x} \right| = x - 5\) (Vì \(x \ge 5\) nên \(5 - x \le 0\)). b. \(\sqrt {\left( {x - 3} \right)_{}^4} = \left| {\left( {x - 3} \right)_{}^2} \right| = \left( {x - 3} \right)_{}^2\). c. \(\sqrt {\left( {y + 1} \right)_{}^6} = \sqrt {\left[ {\left( {y + 1} \right)_{}^3} \right]_{}^2} = \left| {\left( {y + 1} \right)_{}^3} \right| = - \left( {y + 1} \right)_{}^3\) (Vì \(y < - 1\) nên \(y + 1 < 0\) suy ra \(\left( {y + 1} \right)_{}^3 < 0\)).
Quảng cáo
Tham Gia Group Dành Cho Lớp 9 - Ôn Thi Vào Lớp 10 Miễn Phí |