Giải bài 9 trang 89 vở thực hành Toán 9Cho tam giác ABC vuông ở A và BD là tia phân giác góc B. Biết (widehat C = {42^o},AB = 22), tính độ dài BD, AD, DC (làm tròn đến chữ số thập phân thứ nhất).
Toán - Văn - Anh
Quảng cáo
Đề bài Cho tam giác ABC vuông ở A và BD là tia phân giác góc B. Biết \(\widehat C = {42^o},AB = 22\), tính độ dài BD, AD, DC (làm tròn đến chữ số thập phân thứ nhất).Phương pháp giải - Xem chi tiết
+ Tam giác ABC vuông tại A nên \(\widehat B = {90^o} - \widehat C\)
+ Vì BD là tia phân giác góc B nên \(\widehat {ABD} = \frac{{\widehat {ABC}}}{2}\)
+ Tam giác ABD vuông ở A, ta có: \(\cos \widehat {ABD} = \frac{{AB}}{{BD}}\) tính được BD, \(\tan \widehat {ABD} = \frac{{AD}}{{AB}}\) tính được AD
+ Tam giác ABC vuông tại A nên\(\tan C = \frac{{AB}}{{AC}}\), tính được AC.
+ Từ đó, \(DC = AC - AD\)
Lời giải chi tiết (H.4.34)
Quảng cáo
Tham Gia Group Dành Cho Lớp 9 - Ôn Thi Vào Lớp 10 Miễn Phí |