Giải bài 9 trang 36 sách bài tập toán 8 - Cánh diềuThực hiện phép tính:
Toán - Văn - Anh - Khoa học tự nhiên
Quảng cáo
Đề bài Thực hiện phép tính: a) \(\frac{{x + 2y}}{a} + \frac{{x - 2y}}{a}\) với \(a\) là một số khác 0 b) \(\frac{x}{{x - 1}} + \frac{1}{{1 - x}}\) c) \(\frac{{{x^2} + 2}}{{{x^3} - 1}} + \frac{2}{{{x^2} + x + 1}} + \frac{1}{{1 - x}}\) d) \(x + \frac{1}{{x + 1}} - 1\)Phương pháp giải - Xem chi tiết
Sử dụng phương pháp cộng trừ phân thức đại số để thực hiện phép tính.
Lời giải chi tiết a) Điều kiện xác định của biểu thức là \(a \ne 0\)\(\frac{{x + 2y}}{a} + \frac{{x - 2y}}{a} = \frac{{\left( {x + 2y} \right) + \left( {x - 2y} \right)}}{a} = \frac{{x + 2y + x - 2y}}{a} = \frac{{2x}}{a}\)b) Điều kiện xác định của biểu thức là \(x \ne 1\)\(\frac{x}{{x - 1}} + \frac{1}{{1 - x}} = \frac{x}{{x - 1}} - \frac{1}{{x - 1}} = \frac{{x - 1}}{{x - 1}} = 1\)c) Điều kiện xác định của biểu thức là \(x \ne 1\).\(\begin{array}{l}\frac{{{x^2} + 2}}{{{x^3} - 1}} + \frac{2}{{{x^2} + x + 1}} + \frac{1}{{1 - x}}\\ = \frac{{{x^2} + 2}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} + \frac{2}{{{x^2} + x + 1}} - \frac{1}{{x - 1}}\\ = \frac{{{x^2} + 2}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} + \frac{{2\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} - \frac{{{x^2} + x + 1}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\\ = \frac{{{x^2} + 2 + 2\left( {x - 1} \right) - \left( {{x^2} + x + 1} \right)}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\\ = \frac{{{x^2} + 2 + 2x - 2 - {x^2} - x - 1}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\\ = \frac{{\left( {{x^2} - {x^2}} \right) + \left( {2x - x} \right) + \left( {2 - 2 - 1} \right)}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\\ = \frac{{x - 1}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} \\ = \frac{{1}}{{ {{x^2} + x + 1} }}\end{array}\)
Quảng cáo
Tham Gia Group Dành Cho Lớp 8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí |