Tìm khẳng định đúng trong các khẳng định sau:
a) Hai hình đồng dạng phối cảnh (hay vị tự) không là hai hình đồng dạng.
b) Nếu điểm \(O\) là tâm đồng dạng phối cảnh của hai đoạn thẳng \(AB\) và \(A'B'\) đồng dạng phối cảnh thì \(AB//A'B'\).
c) Hình \(H'\) gọi là đồng dạng với hình \(H\) nếu hình \(H'\) bằng một hình nào đó đồng dạng phối cảnh với hình \(H\).
Xem lời giải 🉐✅
Cho tam giác \(ABC\) có \(AB=13,BC=14,CA=15\). Cho \(D,E\) là hai điểm phân biệt.
a) Giả sử tam giác \(A'B'C'\) là hình đồng dạng phối cảnh của tam giác \(ABC\) với điểm \(D\) là tâm đồng dạng phối cảnh
ꦆ Xem lời giải 𝔍