Giải bài 11 trang 36 sách bài tập toán 8 - Cánh diềuCho biểu thức: (T = frac{{{x^3}}}{{{x^2} - 4}} - frac{x}{{x - 2}} - frac{2}{{x + 2}})
Toán - Văn - Anh - Khoa học tự nhiên
Quảng cáo
Đề bài Cho biểu thức: \(T = \frac{{{x^3}}}{{{x^2} - 4}} - \frac{x}{{x - 2}} - \frac{2}{{x + 2}}\) a) Viết điều kiện xác định của biểu thức \(T\) b) Tìm giá trị của \(x\) để \(T = 0\). c) Tìm giá trị nguyên của \(x\) để \(T\) nhận giá trị dương.Phương pháp giải - Xem chi tiết
Áp dụng phương pháp cộng trừ phân thức đại số để rút gọn phép tính, sau đó tìm điều kiện xác định và giá trị của phân thức.
Lời giải chi tiết Ta có: \({x^2} - 4 = \left( {x - 2} \right)\left( {x + 2} \right)\) nên điều kiện xác định của biểu thức \(T\) là \(x - 2 \ne 0;x + 2 \ne 0\) hay \(x \ne 2;x \ne - 2\).b) Ta có:\(\begin{array}{l}T = \frac{{{x^3}}}{{{x^2} - 4}} - \frac{x}{{x - 2}} - \frac{2}{{x + 2}}\\ = \frac{{{x^3}}}{{\left( {x - 2} \right)\left( {x + 2} \right)}} - \frac{{x\left( {x + 2} \right)}}{{\left( {x - 2} \right)\left( {x + 2} \right)}} - \frac{{2\left( {x - 2} \right)}}{{\left( {x - 2} \right)\left( {x + 2} \right)}}\\ = \frac{{{x^3} - {x^2} - 2x - 2x + 4}}{{\left( {x - 2} \right)\left( {x + 2} \right)}} = \frac{{{x^3} - {x^2} - 4x + 4}}{{\left( {x - 2} \right)\left( {x + 2} \right)}}\\ = \frac{{\left( {{x^3} - 4x} \right) - \left( {{x^2} - 4} \right)}}{{{x^2} - 4}} = \frac{{x\left( {{x^2} - 4} \right) - \left( {{x^2} - 4} \right)}}{{{x^2} - 4}}\\ = \frac{{\left( {x - 1} \right)\left( {{x^2} - 4} \right)}}{{{x^2} - 4}} = x - 1\end{array}\)Suy ra \(T = 0\) khi \(x - 1 = 0\) hay \(x = 1\) (thỏa mãn điều kiện xác định
Quảng cáo
Tham Gia Group Dành Cho Lớp 8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí |