Giải bài 9 trang 125 vở thực hành Toán 9Cho hai đường tròn (O) và (O’) cắt nhau tại A và B. Một đường thẳng d đi qua A cắt (O) tại E và cắt (O’) tại F (E và F khác A). Biết điểm A nằm trong đoạn EF. Gọi I và K lần lượt là trung điểm của AE và AF (H.5.49). a) Chứng minh rằng tứ giác OO’KI là một hình thang vuông. b) Chứng minh rằng (IK = frac{1}{2}EF). c) Khi d ở vị trí nào (d vẫn qua A) thì OO’KI là một hình chữ nhật?
Toán - Văn - Anh
Quảng cáo
Đề bài Cho hai đường tròn (O) và (O’) cắt nhau tại A và B. Một đường thẳng d đi qua A cắt (O) tại E và cắt (O’) tại F (E và F khác A). Biết điểm A nằm trong đoạn EF. Gọi I và K lần lượt là trung điểm của AE và AF (H.5.49).Phương pháp giải - Xem chi tiết
a) Chứng minh \(OI \bot d\), \(KO' \bot d\) suy ra OI//KO’. Từ đó chứng minh được tứ giác OO’KI là một hình thang vuông.
b) Ta có: \(AE = 2AI\), \(AF = 2AK\) nên \(EF = AE + AF = 2\left( {AI + AK} \right) = 2IK\) nên \(IK = \frac{1}{2}EF\).
c) + Hình thang OO’KI là hình chữ nhật khi IK//OO’.
Lời giải chi tiết (H.5.50)
Quảng cáo
Tham Gia Group Dành Cho Lớp 9 - Ôn Thi Vào Lớp 10 Miễn Phí |