ftw bet

Giải bài 6.39 trang 15 sách bài tập toán 8 - Kết nối tri thức với cuộc sống

Biết \(x + y + z = 0\) và \(x,y,z \ne 0.\) Rút gọn biểu thức sau:

𝔉Tổng hợp đề thi học kì 2 lớp 8 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Khoa học tự nhiên
Quảng cáo

Đề bài

Biết \(x + y + z = 0\) và \(x,y,z \ne 0.\) Rút gọn biểu thức sau:  \(\frac{{xy}}{{{x^2} + {y^2} - {z^2}}} + \frac{{yz}}{{{y^2} + {z^2} - {x^2}}} + \frac{{zx}}{{{z^2} + {x^2} - {y^2}}}\)

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức rút gọn phân thức để rút gọn phân thức: + Rút gọn phân thức là biến đổi phân thức đó thành một biểu thức mới bằng nó nhưng đơn giản hơn + Muốn rút gọn một phân thức đại số ta làm như sau: - Phân tích tử và mẫu thành nhân tử (nếu cần) để tìm nhân tử chung; - Chia cả tử và mẫu cho nhân tử chung đó.

Lời giải chi tiết

Vì \(x + y + z = 0\) nên \(z =  - \left( {x + y} \right)\)Do đó, \({x^2} + {y^2} - {z^2} = {x^2} + {y^2} - {\left( {x + y} \right)^2} = {x^2} + {y^2} - {x^2} - {y^2} - 2xy =  - 2xy\)Khi đó, \(\frac{{xy}}{{{x^2} + {y^2} - {z^2}}} = \frac{{xy}}{{ - 2xy}} = \frac{{ - 1}}{2}\)Tương tự ta có, \(\frac{{yz}}{{{y^2} + {z^2} - {x^2}}} = \frac{{ - 1}}{2};\frac{{zx}}{{{z^2} + {x^2} - {y^2}}} = \frac{{ - 1}}{2}\)Do đó, \(\frac{{xy}}{{{x^2} + {y^2} - {z^2}}} + \frac{{yz}}{{{y^2} + {z^2} - {x^2}}} + \frac{{zx}}{{{z^2} + {x^2} - {y^2}}} = \frac{{ - 1}}{2} + \frac{{ - 1}}{2} + \frac{{ - 1}}{2} = \frac{{ - 3}}{2}\)

Quảng cáo

Tham Gia Group Dành Cho Lớp 8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close
{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|