Giải bài 6 trang 36 vở thực hành Toán 9 tập 2Các kĩ sư đảm bảo an toàn của đường cao tốc thường sử dụng công thức (d = 0,05{v^2} + 1,1v) để ước tính khoảng cách an toàn tối thiểu d (feet) (tức là độ dài quãng đường mà xe đi được kể từ khi đạp phanh đến khi xe dừng lại) đối với một phương tiện di chuyển với tốc độ v (dặm/ giờ) (theo Algebra 2, NXB MacGraw-Hill, 2008). Giả sử giới hạn tốc độ trên một đường cao tốc nào đó là 70 dặm/ giờ. Nếu một ô tô có thể dừng lại sau 300 feet kể từ khi đạp phanh thì ô tô đó có chạy nhanh hơn giới hạn tốc
Gửi góp ý cho ufa999.cc và nhận về những phần quà hấp dẫn
Quảng cáo
Đề bài Các kĩ sư đảm bảo an toàn của đường cao tốc thường sử dụng công thức \(d = 0,05{v^2} + 1,1v\) để ước tính khoảng cách an toàn tối thiểu d (feet) (tức là độ dài quãng đường mà xe đi được kể từ khi đạp phanh đến khi xe dừng lại) đối với một phương tiện di chuyển với tốc độ v (dặm/ giờ) (theo Algebra 2, NXB MacGraw-Hill, 2008๊). Giả sử giới hạn tốc độ trên một đường cao tốc nào đó là 70 dặm/ giờ. Nếu một ô tô có thể dừng lại sau 300 feet kể từ khi đạp phanh thì ô tô đó có chạy nhanh hơn giới hạn tốc độ của đường cao tốc này không? Phương pháp giải - Xem chi tiết
+ Thay \(d = 300feet\) vào công thức \(d = 0,05{v^2} + 1,1v\) để tìm v.
+ So sánh vận tốc đó với 70 dặm/ giờ, từ đó đưa ra kết luận.
Lời giải chi tiết Thay \(d = 300\) vào công thức \(d = 0,05{v^2} + 1,1v\), ta có tốc độ v của ô tô là nghiệm của phương trình: \(300 = 0,05{v^2} + 1,1v\). Giải phương trình này ta được \(v \approx 67,24\) (thỏa mãn) hoặc \(v \approx - 89,24\) (loại). Suy ra tốc độ của ô tô xấp xỉ 67,24 dặm/ giờ. Vậy ô tô đó không chạy nhanh hơn giới hạn tốc độ của đường cao tốc này.
Quảng cáo
Tham Gia Group Dành Cho Lớp 9 - Ôn Thi Vào Lớp 10 Miễn Phí |