Giải bài 5 trang 88, 89 vở thực hành Toán 7 tập 2Cho tam giác ABC cân tại A. Trên tia đối của tia BC và tia đối của tia CB theo thứ tự lấy hai điểm D và E sao cho (BD = CE). a) Chứng minh (Delta ADE) cân. b) Gọi M là trung điểm của BC. Chứng minh AM là tia phân giác của góc DAE và (AM bot DE). c) Từ B và C kẻ BH, CK theo thứ tự vuông góc với AD, AE. Chứng minh: (BH = CK). d) Chứng minh: HK//BC.༺Tổng hợp đề thi học kì 2 lớp 7 tất cả các môn - Kết nối tri thức Toán - Văn - Anh - Khoa học tự nhiên...Quảng cáo
Đề bài Cho tam giác ABC cân tại A. Trên tia đối của tia BC và tia đối của tia CB theo thứ tự lấy hai điểm D và E sao cho \(BD = CE\). a) Chứng minh \(\Delta ADE\) cân. b) Gọi M là trung điểm của BC. Chứng minh AM là tia phân giác của góc DAE và \(AM \bot DE\). c) Từ B và C kẻ BH, CK theo thứ tự vuông góc với AD, AE. Chứng minh: \(BH = CK\). d) Chứng minh: HK//BC.Phương pháp giải - Xem chi tiết
a) Chứng minh \(\Delta ABD = \Delta ACE\) (c.g.c), do đó \(AD = AE\) nên tam giác ADE cân tại A.
b) + Chứng minh\(\Delta AMD = \Delta AME\) (c.c.c), suy ra \(\widehat {DAM} = \widehat {MAE}\) và \(\widehat {DMA} = \widehat {EMA}\), suy ra AM là phân giác của góc DAE.
+ Mặt khác do \(\widehat {DMA}\) và \(\widehat {AME}\) là hai góc bù nhau nên \(\widehat {DMA} = \widehat {AME} = {90^o}\) hay \(AM \bot DE\).
c) + Chứng minh\(\Delta ABH = \Delta ACK\) (cạnh huyền- góc nhọn), suy ra \(BH = CK\).
d) + Gọi giao điểm của AM và HK là N.
+ Chứng minh \(\Delta ANH = \Delta ANK\left( {c.g.c} \right)\), từ đó chứng minh được \(\widehat {ANH} = \widehat {ANK} = {90^o}\), suy ra \(AM \bot HK\)
+ Vì \(AM \bot HK\), mà \(AM \bot DE\) nên HK//BC.
Lời giải chi tiết
Quảng cáo
Tham Gia Group Dành Cho Lớp 7 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí |