Giải bài 3 (9.38) trang 87 vở thực hành Toán 7 tập 2Gọi AI và AM lần lượt là đường cao và đường trung tuyến xuất phát từ đỉnh A của tam giác ABC. Chứng minh rằng: a) (AI < frac{1}{2}left( {AB + AC} right)); b) (AM < frac{1}{2}left( {AB + AC} right)).༺Tổng hợp đề thi học kì 2 lớp 7 tất cả các môn - Kết nối tri thức Toán - Văn - Anh - Khoa học tự nhiên...Quảng cáo
Đề bài Gọi AI và AM lần lượt là đường cao và đường trung tuyến xuất phát từ đỉnh A của tam giác ABC. Chứng minh rằng: a) \(AI < \frac{1}{2}\left( {AB + AC} \right)\); b) \(AM < \frac{1}{2}\left( {AB + AC} \right)\).Phương pháp giải - Xem chi tiết
a) Chứng minh \(AI < AB\), \(AI < AC\) nên \(2AI < AB + AC\) hay \(AI < \frac{1}{2}\left( {AB + AC} \right)\).
b) + Lấy điểm D sao cho M là trung điểm của AD.
+ Chứng minh \(\Delta ABM = \Delta DCM\left( {c.g.c} \right)\), suy ra \(AB = CD\).
+ Chỉ ra \(AD < AC + DC\), suy ra \(2AM < AC + AB\), suy ra \(AM < \frac{1}{2}\left( {AB + AC} \right)\)
Lời giải chi tiết
Quảng cáo
Tham Gia Group Dành Cho Lớp 7 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí |