Giải bài 20 trang 14 sách bài tập toán 12 - Cánh diềuTìm điểm cực trị của mỗi hàm số sau: a) \(y = {x^3} - 12{\rm{x}} + 8\); b) \(y = 2{{\rm{x}}^4} - 4{{\rm{x}}^2} - 1\); c) \(y = \frac{{{x^2} - 2{\rm{x}} - 2}}{{x + 1}}\); d) \(y = - x + 1 - \frac{9}{{x - 2}}\)
Toán - Văn - Anh - Hoá - Sinh - Sử - Địa
Quảng cáo
Đề bài Tìm điểm cực trị của mỗi hàm số sau: a) \(y = {x^3} - 12{\rm{x}} + 8\); b) \(y = 2{{\rm{x}}^4} - 4{{\rm{x}}^2} - 1\); c) \(y = \frac{{{x^2} - 2{\rm{x}} - 2}}{{x + 1}}\); d) \(y = - x + 1 - \frac{9}{{x - 2}}\)Phương pháp giải - Xem chi tiết
Các bước để tìm điểm cực trị của hàm số \(f\left( x \right)\):
Bước 1.❀ Tìm tập xác định của hàm số \(f\left( x \right)\). Bước 2.꧅ Tính đạo hàm \(f'\left( x \right)\). Tìm các điểm \({x_i}\left( {i = 1,2,...,n} \right)\) mà tại đó hàm số có đạo hàm bằng 0 hoặc không tồn tại. Bước 3.ꦫ Sắp xếp các điểm \({x_i}\) theo thứ tự tăng dần và lập bảng biến thiên. Bước 4.❀ Căn cứ vào bảng biến thiên, nêu kết luận về các điểm cực trị của hàm số. Lời giải chi tiết a) Hàm số có tập xác định là \(\mathbb{R}\). Ta có: \({y^\prime } = 3{{\rm{x}}^2} - 12\); \(y' = 0\) khi \(x = - 2,x = 2\). Bảng biến thiên của hàm số:
Quảng cáo
Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí |