ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số

Giải Bài 18 trang 71 sách bài tập toán 7 - Cánh diều

Chứng minh rằng trong một tam giác, độ dài cạnh lớn nhất sẽ lớn hơn hoặc bằng \(\frac{1}{3}\)chu vi của tam giác nhưng nhỏ hơn nửa chu vi của tam giác đó.

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho ufa999.cc và nhận về những phần quà hấp dẫn
Quảng cáo

Đề bài

Chứng minh rằng trong một tam giác, độ dài cạnh lớn nhất sẽ lớn hơn hoặc bằng \(\frac{1}{3}\)chu vi của tam giác nhưng nhỏ hơn nửa chu vi của tam giác đó.

Phương pháp giải - Xem chi tiết

Gọi độ dài 3 cạnh của tam giác là a, b, c với \(a \ge b \ge c\) Áp dụng bất đẳng thức tam giác để chứng minh \(\frac{{a + b + c}}{3} \le a \le \frac{{a + b + c}}{2}\)

Lời giải chi tiết

🐓Giả sử độ dài ba cạnh của tam giác là a, b, c với a ≥ b ≥ c > 0.

Theo bất đẳng thức tam giác ta có a < b + c.

Suy ra a + a < a + b + c.

Hay \(a < \frac{{a + b + c}}{2}\) (1)

Vì a ≥ b, a ≥ c nên a + a + a ≥ a + b + c.

Hay 3a ≥ a + b + c.

Do đó \(a \ge \frac{{a + b + c}}{3}\) (2)

Từ (1) và (2) suy ra: ♉\(\frac{{a + b + c}}{3} \le a \le \frac{{a + b + c}}{2}\)

Mà chu vi của tam giác này là a + b + c.

Vậy trong một tam giác, độ dài cạnh lớn nhất sẽ lớn hơn hoặc bằng \(\frac{1}{3}\)☂ chu vi của tam giác nhưng nhỏ hơn nửa chu vi của tam giác đó.

Quảng cáo

Tham Gia Group Dành Cho Lớp 7 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close
{muse là gì}|﷽{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số press}|🌌{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số city}|ꦚ{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số city}|{copa america tổ chức mấy năm 1 lần}|🐬{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số đăng nhập}|{binh xập xám}|🅷{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số fan}|{xì dách online}|ꦇ{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số best}|