ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số

Giải bài 1 trang 72 sách bài tập toán 9 - Kết nối tri thức tập 2

Giải các phương trình sau: a) (left( {x + 2} right)left( {{x^2} - x + 3} right) = {x^3} + 8); b) (frac{{11}}{x} = frac{9}{{x + 1}} + frac{2}{{x - 4}}); c) ({left( {{x^2} - 3x} right)^2} - {left( {x - 4} right)^2} = 0).

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho ufa999.cc và nhận về những phần quà hấp dẫn
Quảng cáo

Đề bài

Giải các phương trình sau: a) \(\left( {x + 2} \right)\left( {{x^2} - x + 3} \right) = {x^3} + 8\); b) \(\frac{{11}}{x} = \frac{9}{{x + 1}} + \frac{2}{{x - 4}}\); c) \({\left( {{x^2} - 3x} \right)^2} - {\left( {x - 4} \right)^2} = 0\).

Phương pháp giải - Xem chi tiết

a, c) Các bước giải phương trình: + Bước 1: Đưa phương trình về dạng: \(A.B = 0\). + Bước 2: Nếu \(A.B = 0\) thì A=0 hoặc B=0. Giải các phương trình đó và kết luận. b) Để giải phương trình chứa ẩn ở mẫu ta thường thực hiện các bước như sau:

Bước 1. Tìm điều kiện xác định của phương trình.

Bước 2.𒅌 Quy đồng mẫu hai vế của phương trình rồi khử mẫu.

Bước 3. Giải phương trình vừa tìm được.

Bước 4 (Kết luận).🎐 Trong các giá trị tìm được của ẩn ở Bước 3, giá trị nào thỏa mãn điều kiện xác định chính là nghiệm của phương trình đã cho.

Lời giải chi tiết

a) \(\left( {x + 2} \right)\left( {{x^2} - x + 3} \right) = {x^3} + 8\) \(\left( {x + 2} \right)\left( {{x^2} - x + 3} \right) - \left( {x + 2} \right)\left( {{x^2} - 2x + 4} \right) = 0\) \(\left( {x + 2} \right)\left( {{x^2} - x + 3 - {x^2} + 2x - 4} \right) = 0\) \(\left( {x + 2} \right)\left( {x - 1} \right) = 0\) \(x + 2 = 0\) hoặc \(x - 1 = 0\) \(x =  - 2\) hoặc \(x = 1\) Vậy phương trình đã cho có hai nghiệm \(x =  - 2\); \(x = 1\) b) ĐKXĐ: \(x \ne 0;x \ne  - 1;x \ne 4\). Ta có: \(\frac{{11}}{x} = \frac{9}{{x + 1}} + \frac{2}{{x - 4}}\) \(\frac{{11\left( {x + 1} \right)\left( {x - 4} \right)}}{{x\left( {x + 1} \right)\left( {x - 4} \right)}} = \frac{{9x\left( {x - 4} \right)}}{{x\left( {x + 1} \right)\left( {x - 4} \right)}} + \frac{{2x\left( {x + 1} \right)}}{{x\left( {x + 1} \right)\left( {x - 4} \right)}}\) \(11{x^2} - 33x - 44 = 9{x^2} - 36x + 2{x^2} + 2x\) \(11{x^2} - 9{x^2} - 2{x^2} - 33x + 36x - 2x = 44\) \(x = 44\) (thỏa mãn ĐKXĐ) Vậy phương trình đã cho có nghiệm \(x = 44\). c) \({\left( {{x^2} - 3x} \right)^2} - {\left( {x - 4} \right)^2} = 0\) \(\left( {{x^2} - 3x - x + 4} \right)\left( {{x^2} - 3x + x - 4} \right) = 0\)

\(\left( {{x^2} - 4x + 4} \right)\left( {{x^2} - 2x - 4} \right) = 0\)

Trường hợp 1: \({x^2} - 4x + 4 = 0\) \({\left( {x - 2} \right)^2} = 0\) \(x = 2\) Trường hợp 2: \({x^2} - 2x - 4 = 0\) Ta có: \(\Delta ' = {\left( { - 1} \right)^2} + 4 = 5\) nên phương trình có hai nghiệm phân biệt \({x_1} = 1 + \sqrt 5 \); \({x_2} = 1 - \sqrt 5 \). Vậy phương trình đã cho có ba nghiệm \(x = 2\); \(x = 1 + \sqrt 5 \); \(x = 1 - \sqrt 5 \).

Quảng cáo

Tham Gia Group Dành Cho Lớp 9 - Ôn Thi Vào Lớp 10 Miễn Phí

close
{muse là gì}|♈{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số press}|🐽{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số city}|🌃{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số city}|{copa america tổ chức mấy năm 1 lần}|🌱{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số đăng nhập}|{binh xập xám}|꧑{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số fan}|{xì dách online}|𝔉{ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số best}|