Giải bài 1 trang 32 Chuyên đề học tập Toán 10 – Chân trời sáng tạoChứng minh các đẳng thức sau đúng với mọi \(n \in \mathbb{N}*\):ܫTổng hợp đề thi học kì 2 lớp 10 tất cả các môn - Chân trời sáng tạo Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...Quảng cáo
Đề bài Chứng minh các đẳng thức sau đúng với mọi \(n \in \mathbb{N}*\): a) \(1.2 + 2.3 + 3.4 + ... + n(n + 1) = \frac{{n(n + 1)(n + 2)}}{3}\) b) \(1 + 4 + 9 + ... + {n^2} = \frac{{n(n + 1)(2n + 1)}}{6}\) c) \(1 + 2 + {2^2} + {2^3} + {2^4} + ... + {2^{n - 1}} = {2^n} - 1\)Phương pháp giải - Xem chi tiết
Chứng minh mệnh đề đúng với \(n \ge p\) thì:
Bước 1: Kiểm tra mệnh đề là đúng với \(n = p\)
Bước 2: Giả thiết mệnh đề đúng với số tự nhiên \(n = k \ge p\) và chứng minh mệnh đề đúng với \(n = k + 1.\) Kết luận.
Lời giải chi tiết a) Ta chứng minh a) bằng phương pháp quy nạpVới \(n = 1\) ta có \(1.2 = \frac{{1.(1 + 1).(1 + 2)}}{3}\)Vậy a) đúng với \(n = 1\)Giải sử a) đúng với \(n = k\) nghĩa là có \(1.2 + 2.3 + 3.4 + ... + k(k + 1) = \frac{{k(k + 1)(k + 2)}}{3}\)Ta chứng minh a) đúng với \(n = k + 1\) tức là chứng minh \(1.2 + 2.3 + 3.4 + ... + k(k + 1) + (k + 1)(k + 2) = \frac{{(k + 1)(k + 2)(k + 3)}}{3}\)Thật vậy, ta có\(\begin{array}{l}1.2 + 2.3 + 3.4 + ... + k(k + 1) + (k + 1)(k + 2)\\ = \frac{{k(k + 1)(k + 2)}}{3} + (k + 1)(k + 2)\\ = (k + 1)(k + 2)\left[ {\frac{k}{3} + 1} \right]\\ = \frac{{(k + 1)(k + 2)(k + 3)}}{3}\end{array}\)Vậy a) đúng với mọi \(n \in \mathbb{N}*\).b) Ta chứng minh b) bằng phương pháp quy nạpVới \(n = 1\) ta có \(1 = \frac{{1.(1 + 1)(2.1 + 1)}}{6}\)Vậy b) đúng với \(n = 1\)Giải sử b) đúng với \(n = k\) nghĩa là có \(1 + 4 + 9 + ... + {k^2} = \frac{{k(k + 1)(2k + 1)}}{6}\)Ta chứng minh b) đúng với \(n = k + 1\) tức là chứng minh \(1 + 4 + 9 + ... + {k^2} + {(k + 1)^2} = \frac{{(k + 1)(k + 2)\left[ {2(k + 1) + 1} \right]}}{6}\)
Quảng cáo
Ph/hs Tham Gia Nhóm Để Cập Nhật Điểm Thi, Điểm Chuẩn Miễn Phí |