ftw bet

Giải bài 3 trang 32 Chuyên đề học tập Toán 10 – Chân trời sáng tạo

Chứng minh rằng nếu \(x > - 1\) thì \({(1 + x)^n} \ge 1 + nx\) với mọi \(n \in \mathbb{N}*\)

🌞Tổng hợp đề thi học kì 2 lớp 10 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...
Quảng cáo

Đề bài

Chứng minh rằng nếu \(x >  - 1\) thì \({(1 + x)^n} \ge 1 + nx\) với mọi \(n \in \mathbb{N}*\)

Lời giải chi tiết

Ta chứng minh mệnh đề bằng phương pháp quy nạpVới \(n = 1\) ta có \({(1 + x)^1} = 1 + 1.x\)Vậy mệnh đề đúng với \(n = 1\)Giải sử mệnh đề đúng với \(n = k\) nghĩa là có \({(1 + x)^k} \ge 1 + kx\)Ta chứng minh mệnh đề đúng với \(n = k + 1\) tức là chứng minh  \({(1 + x)^{k + 1}} \ge 1 + (k + 1)x\)Thật vậy, ta có\({(1 + x)^{k + 1}} = (1 + x){(1 + x)^k} \ge (1 + x)(1 + kx) = 1 + (1 + k)x + k{x^2} \ge 1 + (k + 1)x\)Do \(1 + x > 0,k{x^2} \ge 0\)Vậy mệnh đề đúng với mọi \(n \in \mathbb{N}*\).

Quảng cáo

Ph/hs Tham Gia Nhóm Để Cập Nhật Điểm Thi, Điểm Chuẩn Miễn Phí

close
{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|{ftw bet}|