1) Cho \(\cos a = - \frac{1}{3}\) \(\left( {\frac{\pi }{2} < a < \pi } \right)\). Tính sin2a.
Giải:
Vì \(\frac{\pi }{2} < a < \pi \) nên sina > 0. Do đó \(\sin a = \sqrt {1 - {{\cos }^2}a} = \sqrt {1 - {{\left( { - \frac{1}{3}} \right)}^2}} = \sqrt {\frac{8}{9}} = \frac{{2\sqrt 2 }}{3}\). Vậy \(\sin 2a = 2\sin a\cos a = 2.\frac{{2\sqrt 2 }}{3}.\left( { - \frac{1}{3}} \right) = - \frac{{4\sqrt 2 }}{9}\).2) Cho \(\sin a + \cos a = \frac{1}{2}\). Tính:
a) sin2a; b) cos4a.Giải:
a) \(\sin a + \cos a = \frac{1}{2}\) \( \Rightarrow {\left( {\sin a + \cos a} \right)^2} = \frac{1}{4}\) \( \Leftrightarrow {\sin ^2}a + {\cos ^2}a + 2\sin a\cos a = \frac{1}{4}\) \( \Leftrightarrow 1 + 2\sin a\cos a = \frac{1}{4}\) \( \Leftrightarrow 2\sin a\cos a = \frac{1}{4} - 1 = - \frac{3}{4}\). b) \(\cos 4a = \cos (2.2a) = 1 - {\sin ^2}2a = - \frac{1}{8}\).3) Biết \(\cos \frac{\pi }{6} = \frac{{\sqrt 3 }}{2}\). Tính \(\cos \frac{\pi }{{12}}\).
Giải:
Ta có \({\cos ^2}\frac{\pi }{{12}} = \frac{{1 + \cos \frac{\pi }{6}}}{2} = \frac{{2 + \sqrt 3 }}{4}\). Mà \(\cos \frac{\pi }{{12}} > 0\) nên \(\cos \frac{\pi }{{12}} = \frac{{\sqrt {2 + \sqrt 3 } }}{2}\).