Lưu ý:
+ \({0^o} \le \left( {(\alpha ),(\beta )} \right) \le {90^o}\). + Nếu \((\alpha )\)//\((\beta )\) hoặc \((\alpha ) \equiv (\beta )\) thì \(\left( {(\alpha ),(\beta )} \right) = {0^o}\). + \((\alpha ) \bot (\beta ) \Leftrightarrow \left( {(\alpha ),(\beta )} \right) = {90^o}\).Giải:
Mặt phẳng \((\alpha )\) và \((\beta )\) lần lượt có các vectơ pháp tuyến là \(\overrightarrow n = (2;2; - 4)\) và \(\overrightarrow {n'} = (1;0; - 1)\). Ta có: \(\cos ((\alpha ),(\beta )) = \frac{{\left| {\overrightarrow n .\overrightarrow {n'} } \right|}}{{\left| {\overrightarrow n .\overrightarrow {n'} } \right|}} = \frac{{\left| {2.1 + 2.0 + ( - 4).( - 1)} \right|}}{{\sqrt {{2^2} + {2^2} + {{( - 4)}^2}} .\sqrt {{1^2} + {0^2} + {{( - 1)}^2}} }} = \frac{{\sqrt 3 }}{2}\). Vậy \(\left( {(\alpha ),(\beta )} \right) = {30^o}\).