Bài 5.22 trang 123 SGK Toán 11 tập 1 - Kết nối tri thứcCho hàm số (fleft( x right) = frac{{x - {x^2}}}{{left| x right|}}). Khi đó (mathop {lim }limits_{x to + {0^ - }} fleft( x right)) bằng A. 0 B. 1 C. ( + infty ) D. -1
Gửi góp ý cho ufa999.cc và nhận về những phần quà hấp dẫn
Quảng cáo
Đề bài Cho hàm số \(f\left( x \right) = \frac{{x - {x^2}}}{{\left| x \right|}}\). Khi đó \(\mathop {\lim }\limits_{x \to + {0^ + }} f\left( x \right)\) bằng A. 0 B. 1 C. \( + \infty \) D. -1Video hướng dẫn giải Phương pháp giải - Xem chi tiết
Để tính giới hạn của dãy số dạng phân thức, ta chia cả tử và mẫu cho lũy thừa cao nhất của n, rồi áp dụng quy tắc tính giới hạn.
Lời giải chi tiết Vì \(x \to {0^ + }\) nên x > 0, suy ra \(\left| x \right| = x\). \(\mathop {\lim }\limits_{x \to {0^ + }} f(x) = \mathop {\lim }\limits_{x \to {0^ + }} \frac{{x - {x^2}}}{{\left| x \right|}} = \mathop {\lim }\limits_{x \to {0^ + }} \frac{{x\left( {1 - x} \right)}}{x} = \mathop {\lim }\limits_{x \to {0^ + }} (1 - x) = 1 - 0 = 1\). Đáp án: B
Quảng cáo
Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí |